Advertisement

Polymorphism and thermal behavior of sodium cyclamate

  • D. A. V. Medina
  • A. P. G. Ferreira
  • E. T. G. CavalheiroEmail author
Article

Abstract

Due to its potential thermal degradation or polymorphic transformation, thermal stability of a food additive may limit its use in food preparations, when heating process is involved. In this paper, we present an investigation on thermal behavior of sodium cyclamate, one of the most frequently used components in tabletop sweeteners. Thermogravimetric data revealed that sodium cyclamate exists in two polymorphic forms: sodium cyclamate di-hydrated (C6H12NSO3Na·2H2O) and anhydrous sodium cyclamate (C6H12NSO3Na). X-ray powder diffraction data revealed that hydrate and anhydrate sodium cyclamate are true polymorphs. Under heating conditions, the hydrated form dehydrated in a complex multiple-step process. Finally, thermal decomposition of sodium cyclamate was studied and a degradation mechanism is proposed. At 170 °C, sodium cyclamate sublimates and dimerizes, by condensation of two cyclamate moieties, leading to formation of highly pure N,N-diciclohexyl sulfamide, a potential anxiolytic compound.

Keywords

Cyclamate Phase change Polymorphism Thermal decomposition Dimerization 

Notes

Funding

Funding was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant No. 2015/09299-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Supplementary material

10973_2019_8037_MOESM1_ESM.docx (367 kb)
Supplementary material 1 (DOCX 366 kb)

References

  1. 1.
    Carocho M, Morales P, Ferreira ICFR. Sweeteners as food additives in the XXI century: a review of what is known, and what is to come. Food Chem Toxicol. 2017;107:302–17.CrossRefGoogle Scholar
  2. 2.
    Audrieth LF, Sveda M. Preparation and properties of some N-substituted sulfamic acids. J Org Chem. 1944;9:89–101.CrossRefGoogle Scholar
  3. 3.
    Sylvetsky AC, Rother KI. Trends in the consumption of low-calorie sweeteners. Physiol Behav. 2016;164:446–50.CrossRefGoogle Scholar
  4. 4.
    Mooradian AD, Smith M, Tokuda M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: a narrative review. Clin Nutr. 2017;18:1–8.Google Scholar
  5. 5.
    Drasar BS, Renwick AG, Williams RT. The role of the gut flora in the metabolism of cyclamate. Biochem J. 1982;129:881–90.CrossRefGoogle Scholar
  6. 6.
    Pomeranz Y, Meloan CE. Food analysis—theory and practice. New York: Chapman and Hall; 1994.Google Scholar
  7. 7.
    Galico DA, Nova CV, Guerra RB, Bannach G. Thermal and spectroscopic studies of the antioxidant food additive propyl gallate. Food Chem. 2015;182:89–94.CrossRefGoogle Scholar
  8. 8.
    Medina DA, Ferreira APG, Cavalheiro ETG. Thermal investigation on polymorphism in sodium saccharine. J Therm Anal Calorim. 2014;117:361–7.CrossRefGoogle Scholar
  9. 9.
    Carvalho LC, Segato MP, Nunez RS, Novak C, Cavalheiro ETG. Thermoanalytical studies of sweeteners. J Therm Anal Calorim. 2009;97:359–65.CrossRefGoogle Scholar
  10. 10.
    Leban I, Tasic DR, Laha N, Klofutarb C. Structures of artificial sweeteners–cyclamic acid and sodium cyclamate with other cyclamates. Acta Crystallogr B. 2007;63:418–25.CrossRefGoogle Scholar
  11. 11.
    Bruck SD, Stemple NR. Crystalline transition of cyclohexanesulfamic acid. J Phys Chem. 1967;41:3336–7.CrossRefGoogle Scholar
  12. 12.
    Suresh SJ, Naik VM. Hydrogen bond thermodynamic properties of water from dielectric constant data. J Chem Phys. 2000;113:9727–32.CrossRefGoogle Scholar
  13. 13.
    Wasowski C, Gavernet L, Barrios IA, Villalba ML, Pastore V, Samaja G, Enrique A, Bruno-Blanch LE, Marder M. N, N′-Dicyclohexylsulfamide and N, N′-diphenethylsulfamide are anticonvulsant sulfamides with affinity for the benzodiazepine binding site of the GABAA receptor and anxiolytic activity in mice. Biochem Pharmacol. 2009;83:253–9.CrossRefGoogle Scholar
  14. 14.
    Pisera-Fuster A, Otero S, Talevi A, Bruno-Blanch L, Bernabeu R. Anticonvulsant effect of sodium cyclamate and propylparaben on pentylenetetrazol-induced seizures in zebrafish. Synapse. 2017;71(4):21961–71.CrossRefGoogle Scholar
  15. 15.
    Gavernet L, Barrios IA, Cravero MS, Bruno-Blanch LE. Design, synthesis, and anticonvulsant activity of some sulfamides. Bioorgan Med Chem. 2007;15:5604–14.CrossRefGoogle Scholar
  16. 16.
    Gavernet L, Dominguez Cabrera J, Bruno-Blanch LE, Estiú GL. 3D-QSAR design of novel antiepileptic sulfamides. Bioorgan Med Chem. 2007;15:1556–67.CrossRefGoogle Scholar
  17. 17.
    Medina DAV, Ferreira APG, Cavalheiro ETG, University of São Paulo. Revista da propriedade intelectual, 2352, BR102014013914-1 A2, (2016), 72.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations