Advertisement

The development of a new route to the synthesis of strontium orthosilicate

  • Nshan ZulumyanEmail author
  • Anna Isahakyan
  • Hayk Beglaryan
  • Stella Melikyan
  • Anna Terzyan
Article
  • 5 Downloads

Abstract

A new route including precipitation combined with calcination has been developed for the synthesis of strontium orthosilicate (Sr2SiO4) nano-sized particles. The stirring of the boiling aqua suspension prepared from hydrosilicagel derived from serpentine minerals ((Mg(Fe))6[Si4O10](OH)8), sodium hydroxide (NaOH) and strontium chloride (SrCl2) results in the precipitation of hydrated strontium silicate species whose dehydration is followed by their crystallization into strontium ortho- and metasilicate SrSiO3 on heating. The stirring time and sodium hydroxide concentration are the key parameters controlling strontium silicates formation. The influence of these parameters on the precipitates formation and their phase transformations at various temperatures has been studied by X-ray diffraction, thermal analyses and electron microscopy. The optimal parameters, namely the molar ratio of initial reagents, stirring time, the temperature and duration of heat treatment providing strontium orthosilicate synthesis, have been suggested. The average particle size of strontium orthosilicate synthesized by this method is 20–40 nm.

Keywords

Serpentine mineral Hydrosilicagel Sol–gel process Strontium silicate hydrates Sr2SiO4 SrSiO3 

Notes

Acknowledgements

This work was supported by the RA MES State Committee of Science, in the frames of the research Project No. 16YR-1D025.

References

  1. 1.
    Barry TL. Fluorescence of Eu2+-activated phases in binary alkaline earth orthosilicate systems. J Electrochem Soc. 1968;115(11):1181–4.  https://doi.org/10.1149/1.2410935.CrossRefGoogle Scholar
  2. 2.
    Shrivastava NK, Bapat MN, Khan M, Sivaraman S. Thermoluminescence and isothermal decay of Sr2SiO4:Dy. J Mater Sci. 1986;21(7):2540–6.  https://doi.org/10.1007/bf01114304.CrossRefGoogle Scholar
  3. 3.
    Yang J, Zuo Y, Liu H, Su W. The luminescence characteristics of europium activated strontium silicate synthesized at high temperature and high pressure. J Mater Sci Lett. 1996;15(21):1891–4.  https://doi.org/10.1007/bf00264088.CrossRefGoogle Scholar
  4. 4.
    Park JK, Lim MA, Kim CH, Park HD, Park JT, Choi SY. White light-emitting diodes of GaN-based Sr2SiO4: Eu and the luminescent properties. Appl Phys Lett. 2003;82(5):683–5.  https://doi.org/10.1063/1.1544055.CrossRefGoogle Scholar
  5. 5.
    Barzowska J, Chruścińska A, Przegiętka K, Szczodrowski K. Dosimetric features of strontium orthosilicate (Sr2SiO4) doped with Eu 2+. Radiat Phys Chem. 2014;104:31–5.  https://doi.org/10.1016/j.radphyschem.2014.05.043.CrossRefGoogle Scholar
  6. 6.
    Lee JH, Kim YJ. Photoluminescent properties of Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method. Mater Sci Eng B. 2008;146(1):99–102.  https://doi.org/10.1016/j.mseb.2007.07.052.CrossRefGoogle Scholar
  7. 7.
    He H, Fu R, Zhang X, Song X, Zhao X, Pan Z. Photoluminescence spectra tuning of Eu2+ activated orthosilicate phosphors used for white light emitting diodes. J Mater Sci Mater Electron. 2009;20(5):433–8.  https://doi.org/10.1007/s10854-008-9747-5.CrossRefGoogle Scholar
  8. 8.
    Hu Y, Zhuang W, Hao J, Huang X, He H. Preparation mechanism and luminescence of Sr2SiO4: Eu phosphor from (Sr, Eu) CO3@ SiO2 core-shell precursor. Open J Inorg Chem. 2012;2(1):6.  https://doi.org/10.4236/ojic.2012.21002.CrossRefGoogle Scholar
  9. 9.
    Chang Y-L, Hsiang H-I, Lan F-T, Mei L-T, Yen F-S. Synthesis of Sr2SiO4 nanometer particles from the core–shell precursor of SrCO3/SiO2. J Alloys Compd. 2010;500(1):108–12.  https://doi.org/10.1016/j.jallcom.2010.04.002.CrossRefGoogle Scholar
  10. 10.
    Guo H, Wang X, Zhang X, Tang Y, Chen L, Ma C. Effect of NH4F flux on structural and luminescent properties of Sr2SiO4: Eu2+ phosphors prepared by solid-state reaction method. J Electrochem Soc. 2010;157(8):J310–4.  https://doi.org/10.1149/1.3454723.CrossRefGoogle Scholar
  11. 11.
    Hsu C-H, Jagannathan R, Lu C-H. Luminescent enhancement with tunable emission in Sr2SiO4: Eu2+ phosphors for white LEDs. Mater Sci Eng B. 2010;167(3):137–41.  https://doi.org/10.1016/j.mseb.2010.01.045.CrossRefGoogle Scholar
  12. 12.
    Sahu IP. Orange-red emitting europium doped strontium ortho-silicate phosphor prepared by a solid state reaction method. Luminescence. 2017;32(3):364–74.  https://doi.org/10.1002/bio.3188.CrossRefGoogle Scholar
  13. 13.
    Chen H-Y, Weng M-H, Chang S-J, Yang R-Y. Preparation of Sr2SiO4:Eu3+ phosphors by microwave-assisted sintering and their luminescent properties. Ceram Int. 2012;38(1):125–30.  https://doi.org/10.1016/j.ceramint.2011.06.044.CrossRefGoogle Scholar
  14. 14.
    Hsu W-H, Sheng M-H, Tsai M-S. Preparation of Eu-activated strontium orthosilicate (Sr1.95SiO4:Eu0.05) phosphor by a sol–gel method and its luminescent properties. J Alloys Compd. 2009;467(1):491–5.  https://doi.org/10.1016/j.jallcom.2007.12.014.CrossRefGoogle Scholar
  15. 15.
    Kamei S, Kojima Y, Nishimiya N. Preparation and fluorescence properties of novel red-emitting Eu3+-activated amorphous alkaline earth silicate phosphors. J Lumin. 2010;130(11):2247–50.  https://doi.org/10.1016/j.jlumin.2010.06.028.CrossRefGoogle Scholar
  16. 16.
    Dutczak D, Milbrat A, Katelnikovas A, Meijerink A, Ronda C, Jüstel T. Yellow persistent luminescence of Sr2SiO4:Eu2+, Dy3+. J Lumin. 2012;132(9):2398–403.  https://doi.org/10.1016/j.jlumin.2012.03.055.CrossRefGoogle Scholar
  17. 17.
    Gupta SK, Mohapatra M, Kaity S, Natarajan V, Godbole SV. Structure and site selective luminescence of sol–gel derived Eu:Sr2SiO4. J Lumin. 2012;132(6):1329–38.  https://doi.org/10.1016/j.jlumin.2012.01.011.CrossRefGoogle Scholar
  18. 18.
    Wu Y, Wang Y, He D, Fu M, Zhao Y, Li Y, et al. Synthesis and luminescence properties of Sr2SiO4: Eu3+, Dy3+ phosphors by the sol–gel method. J Nanosci Nanotechnol. 2011;11(11):9439–44.  https://doi.org/10.1166/jnn.2011.5217.CrossRefGoogle Scholar
  19. 19.
    Gupta SK, Bhide MK, Kadam RM, Natarajan V, Godbole SV. Nanorods of white light emitting Sr2SiO4:Eu2+: microemulsion-based synthesis, EPR, photoluminescence, and thermoluminescence studies. J Exp Nanosci. 2015;10(8):610–21.  https://doi.org/10.1080/17458080.2013.858833.CrossRefGoogle Scholar
  20. 20.
    Gupta SK, Nigam S, Yadav AK, Mohapatra M, Jha SN, Majumder C, et al. An insight into local environment of lanthanide ions in Sr2SiO4: Ln (Ln = Sm, Eu and Dy). N J Chem. 2015;39(8):6531–9.  https://doi.org/10.1039/C5NJ01191D.CrossRefGoogle Scholar
  21. 21.
    Gupta SK, Pathak N, Thulasidas SK, Natarajan V. Local site symmetry of Sm3+ in sol–gel derived α′-Sr2SiO4: probed by emission and fluorescence lifetime spectroscopy. J Lumin. 2016;169:669–73.  https://doi.org/10.1016/j.jlumin.2014.10.009.CrossRefGoogle Scholar
  22. 22.
    Pan H, Li X, Zhang J, Guan L, Su H, Yang Z, et al. Crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor prepared by sol–gel method. J Appl Biomater Funct Mater. 2016;14:62–7.  https://doi.org/10.5301/jabfm.5000316.Google Scholar
  23. 23.
    Tang J-Y, Zhong H, Hao L-Y, Xu X. Synthesis of the uniform hollow spherical Sr2SiO4:Eu2+ phosphors via an h-BN protective method. Opt Mater. 2013;35(12):2618–23.  https://doi.org/10.1016/j.optmat.2013.07.032.CrossRefGoogle Scholar
  24. 24.
    Prathibha BS, Chandrashekara MS, Naghabhushan BM, Nagabhushan H. Photo and thermo luminescence studies of Sr2SiO4: Eu3+ phosphor. Int J Innov Eng Technol. 2015;6(2):190–200.Google Scholar
  25. 25.
    Verma D, Patel R. Low temperature solution combustion synthesis and luminescence properties of nanoparticle of Sr2SiO4: Dy 3 phosphors. Adv Appl Sci Res. 2015;6(6):89–94.Google Scholar
  26. 26.
    Venkataravanappa M, Nagabhushana H, Daruka Prasad B, Darshan GP, Basavaraj RB, Vijayakumar GR. Dual color emitting Eu doped strontium orthosilicate phosphors synthesized by bio-template assisted ultrasound for solid state lightning and display applications. Ultrason Sonochem. 2017;34:803–20.  https://doi.org/10.1016/j.ultsonch.2016.07.004.CrossRefGoogle Scholar
  27. 27.
    Zulumyan NO, Isaakyan AR, Oganesyan ZG. A new promising method for processing of serpentinites. Russ J Appl Chem. 2007;80(6):1020–2.  https://doi.org/10.1134/s1070427207060353.CrossRefGoogle Scholar
  28. 28.
    Zulumyan N, Mirgorodski A, Isahakyan A, Beglaryan H. The mechanism of decomposition of serpentines from peridotites on heating. J Therm Anal Calorim. 2014;115(2):1003–12.  https://doi.org/10.1007/s10973-013-3483-7.CrossRefGoogle Scholar
  29. 29.
    Zulumyan N, Isahakyan A, Beglaryan H, Melikyan S. A study of thermal decomposition of antigorite from dunite and lizardite from peridotite. J Therm Anal Calorim. 2018;131(2):1201–11.  https://doi.org/10.1007/s10973-017-6705-6.CrossRefGoogle Scholar
  30. 30.
    Zulumyan NO, Isaakyan AR, Pirumyan PA, Beglaryan AA. The structural characteristics of amorphous silicas. Russ J Phys Chem A. 2010;84(4):700–2.  https://doi.org/10.1134/S003602441004031X.CrossRefGoogle Scholar
  31. 31.
    Isahakyan AR, Beglaryan HA, Pirumyan PA, Papakhchyan LR, Zulumyan NH. An IR spectroscopic study of amorphous silicas. Russ J Phys Chem A. 2011;85(1):72–5.  https://doi.org/10.1134/S0036024410121015.CrossRefGoogle Scholar
  32. 32.
    Carlson ET, Wells LS. Hydrothermal preparation of some strontium silicates. J Res Natl Bureau Stand. 1953;51(2):73–80.CrossRefGoogle Scholar
  33. 33.
    Felmy AR, Mason MJ, Gassman PL, McCready DE. The formation of Sr silicates at low temperature and the solubility product of tobermorite-like Sr5Si6O16(OH)2 5H2O. Am Mineral. 2003;88(1):73.  https://doi.org/10.2138/am-2003-0109.CrossRefGoogle Scholar
  34. 34.
    Osamu Y, Yoshifumi I, Kiyoshi S. Formation of Sr2SiO4 and SrSiO3 from strontium silicate hydrate prepared by the alkoxy method. Bull Chem Soc Jpn. 1980;53(1):275–6.  https://doi.org/10.1246/bcsj.53.275.CrossRefGoogle Scholar
  35. 35.
    Kirschenbaum H. The classical chemical analysis of silicate rocks: the old and the new. Washington, U.S. Geological survey bulletin 1547;1983.Google Scholar
  36. 36.
    Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978;11(2):102–13.  https://doi.org/10.1107/S0021889878012844.CrossRefGoogle Scholar
  37. 37.
    Ropp RC. Group 14 (C, Si, Ge, Sn, and Pb) alkaline earth compounds. In: Ropp RC, editor. Encyclopedia of the alkaline earth compounds. Amsterdam: Elsevier; 2013. p. 351–480.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Nshan Zulumyan
    • 1
    Email author
  • Anna Isahakyan
    • 1
  • Hayk Beglaryan
    • 1
    • 2
  • Stella Melikyan
    • 1
    • 3
  • Anna Terzyan
    • 1
  1. 1.The Institute of General and Inorganic Chemistry of the National Academy of Sciences of the Republic of Armenia (IGIC NAS RA)Yerevan CityArmenia
  2. 2.Yerevan State UniversityYerevanArmenia
  3. 3.Armenian State Pedagogical University After Kh. AbovyanYerevanArmenia

Personalised recommendations