Natural and acid-treated attapulgite reinforced soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks

  • Ke Xu
  • Chaowei Li
  • Chengshuang Wang
  • Yongjia Jiang
  • Ya Liu
  • Hongfeng XieEmail author


Soybean oil-based polyurethane (PU)/epoxy (EP) interpenetrating polymer network (IPN) nanocomposites were prepared with natural attapulgite (N-ATT) and acid-treated attapulgite (A-ATT). The structure, glass transition, damping properties, thermal stability, mechanical properties and morphology of PU/EP IPN/ATT nanocomposites were characterized by X-ray diffraction (XRD), dynamic mechanical analysis (DMA), thermogravimetric analyzer, universal test machine and scanning electronic microscope (SEM). XRD showed that interaction with PU did not change the crystal structures of ATT. DMA results revealed the addition of ATT improved the glass transition temperature of the soybean oil-based PU/EP IPN, especially for A-ATT. However, the incorporation of ATT slightly decreased the damping properties of the soybean oil-based PU/EP IPN. Tensile tests confirmed that A-ATT had a significant reinforcement effect on the soybean oil-based PU/EP IPN. The tensile strength of the soybean oil-based PU/EP IPN increased by 56% with the addition of 4 mass% A-ATT. SEM demonstrated the relatively uniform dispersion of both N-ATT and A-ATT in the soybean oil-based PU/EP IPN matrix.


Soybean oil-based polyurethane Interpenetrating polymer network (IPN) Attapulgite Damping properties Thermal properties Mechanical properties 



The authors are grateful for financial supports from Program for the Fundamental Research Funds for the Central Universities (20620140066), Changjiang Scholars and Innovative Research Team in University (IRT1252) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Petrie E. Epoxy adhesive formulations. New York: McGraw Hill; 2005.Google Scholar
  2. 2.
    Chen R, Gong J, Jiang Y, Wang Q, Xi Z, Xie H. Halogen-free flame retarded cold-mix epoxy asphalt binders: rheological, thermal and mechanical characterization. Constr Build Mater. 2018;186:863–70.CrossRefGoogle Scholar
  3. 3.
    Sun Y, Gong J, Liu Y, Jiang Y, Xi Z, Cai J, et al. Viscous, damping, and mechanical properties of epoxy asphalt adhesives containing different penetration-grade asphalts. J Appl Polym Sci. 2019;136(5):47027.CrossRefGoogle Scholar
  4. 4.
    Liu Y, Zhang J, Jiang Y, Li C, Xi Z, Cai J, et al. Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts. Constr Build Mater. 2018;165:163–72.CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Sun Y, Xu K, Yuan Z, Zhang J, Chen R, et al. Brucite modified epoxy mortar binders: flame retardancy, thermal and mechanical characterization. Constr Build Mater. 2015;93:1089–96.CrossRefGoogle Scholar
  6. 6.
    Liu Y, Xi Z, Cai J, Xie H. Laboratory investigation of the properties of epoxy asphalt rubber (EAR). Mater Struct. 2017;50(5):219.CrossRefGoogle Scholar
  7. 7.
    Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P. Biobased thermosetting epoxy: present and future. Chem Rev. 2014;114(2):1082–115.CrossRefGoogle Scholar
  8. 8.
    Yin H, Jin H, Wang C, Sun Y, Yuan Z, Xie H, et al. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim. 2014;115(2):1073–80.CrossRefGoogle Scholar
  9. 9.
    Kargarzadeh H, Ahmad I, Abdullah I. Liquid rubbers as toughening agents. Micro- and nanostructured epoxy/rubber blends. New York: Wiley; 2014. p. 31–52.Google Scholar
  10. 10.
    Dhevi DM, Jaisankar SN, Pathak M. Effect of new hyperbranched polyester of varying generations on toughening of epoxy resin through interpenetrating polymer networks using urethane linkages. Eur Polym J. 2013;49(11):3561–72.CrossRefGoogle Scholar
  11. 11.
    Zhang J, Wang Y, Wang X, Ding G, Pan Y, Xie H, et al. Effects of amino- functionalized carbon nanotubes on the properties of amine- terminated butadiene- acrylonitrile rubber- toughened epoxy resins. J Appl Polym Sci. 2014;131(13):40472.Google Scholar
  12. 12.
    Wang YT, Wang CS, Yin HY, Wang LL, Xie HF, Cheng RS. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett. 2012;6(9):719–28.CrossRefGoogle Scholar
  13. 13.
    Harani H, Fellahi S, Bakar M. Toughening of epoxy resin using synthesized polyurethane prepolymer based on hydroxyl-terminated polyesters. J Appl Polym Sci. 1998;70(13):2603–18.CrossRefGoogle Scholar
  14. 14.
    Sperling L, Hu R. Interpenetrating polymer networks. Polymer blends handbook. Berlin: Springer; 2014. p. 677–724.Google Scholar
  15. 15.
    Lv X, Huang Z, Huang C, Shi M, Gao G, Gao Q. Damping properties and the morphology analysis of the polyurethane/epoxy continuous gradient IPN materials. Compos Part B Eng. 2016;88:139–49.CrossRefGoogle Scholar
  16. 16.
    Karak N. Vegetable oil-based polymers. Cambridge: Woodhead Publishing Limited; 2012.CrossRefGoogle Scholar
  17. 17.
    Liu W, Xu K, Wang C, Qian B, Sun Y, Zhang Y, et al. Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites. J Therm Anal Calorim. 2016;123(3):2459–68.CrossRefGoogle Scholar
  18. 18.
    Wang C, Zhang Y, Lin L, Ding L, Li J, Lu R, et al. Thermal, mechanical, and morphological properties of functionalized graphene-reinforced bio-based polyurethane nanocomposites. Eur J Lipid Sci Technol. 2015;117(12):1940–6.CrossRefGoogle Scholar
  19. 19.
    Chen S, Wang Q, Wang T, Pei X. Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des. 2011;32(2):803–7.CrossRefGoogle Scholar
  20. 20.
    Jin H, Zhang Y, Wang C, Sun Y, Yuan Z, Pan Y, et al. Thermal, mechanical, and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2014;117(2):773–81.CrossRefGoogle Scholar
  21. 21.
    Xu K, Chen R, Wang C, Sun Y, Zhang J, Liu Y, et al. Organomontmorillonite-modified soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2016;126(3):1253–60.CrossRefGoogle Scholar
  22. 22.
    Bradley W. The structural scheme of attapulgite. Am Mineral. 1940;25:405–10.Google Scholar
  23. 23.
    Sun Y, Zhang Y, Xu K, Xu W, Yu D, Zhu L, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes. J Appl Polym Sci. 2015;132(12):41694.Google Scholar
  24. 24.
    Wang C, Wang Y, Liu W, Yin H, Yuan Z, Wang Q, et al. Natural fibrous nanoclay reinforced soy polyol-based polyurethane. Mater Lett. 2012;78:85–7.CrossRefGoogle Scholar
  25. 25.
    Williams RJJ, Rozenberg BA, Pascault J-P. Reaction-induced phase separation in modified thermosetting polymers. Polymer analysis polymer physics. Berlin: Springer; 1997. p. 95–156.Google Scholar
  26. 26.
    Sun Y, Liu Y, Jiang Y, Xu K, Xi Z, Xie H. Thermal and mechanical properties of natural fibrous nanoclay reinforced epoxy asphalt adhesives. Int J Adhes Adhes. 2018;85:308–14.CrossRefGoogle Scholar
  27. 27.
    Komadel P. Acid activated clays: materials in continuous demand. Appl Clay Sci. 2016;131:84–99.CrossRefGoogle Scholar
  28. 28.
    Lai S-Q, Li T-S, Liu X-J, Lv R-G. A Study on the friction and wear behavior of PTFE filled with acid treated nano-attapulgite. Macromol Mater Eng. 2004;289(10):916–22.CrossRefGoogle Scholar
  29. 29.
    Tang QG, Yang Y, Wang F, Liang XH, Zhang FQ, Liang JS. Effect of acid on surface properties of modified attapulgite and performance of styrene butadiene rubber filled by modified attapulgite. Nanosc Nanotechnol Lett. 2014;6(3):231–7.CrossRefGoogle Scholar
  30. 30.
    Yeh JT, Wang CK, Tsai CC, Lin CH, Huang CY, Chen KN, et al. Ultradrawing properties of ultra-high molecular weight polyethylene/hydrochloric acid treated attapulgite fibers. J Polym Res. 2013;20(9):240.CrossRefGoogle Scholar
  31. 31.
    Wang W, Li A, Zhang J, Wang A. Study on superabsorbent composite. XI. Effect of thermal treatment and acid activation of attapulgite on water absorbency of poly(acrylic acid)/attapulgite superabsorbent composite. Polym Compos. 2007;28(3):397–404.CrossRefGoogle Scholar
  32. 32.
    Wang W, Zhang J, Chen H, Wang A. Study on superabsorbent composite. VIII. Effects of acid- and heat- activated attapulgite on water absorbency of polyacrylamide/attapulgite. J Appl Polym Sci. 2007;103(4):2419–24.CrossRefGoogle Scholar
  33. 33.
    Wang R, Li Z, Wang Y, Liu W, Deng L, Jiao W, et al. Effects of modified attapulgite on the properties of attapulgite/epoxy nanocomposites. Polym Compos. 2013;34(1):22–31.CrossRefGoogle Scholar
  34. 34.
    Wang C, Dai L, Yang Z, Ge C, Li S, He M, et al. Reinforcement of castor oil-based polyurethane with surface modification of attapulgite. Polymers. 2018;10(11):1236.CrossRefGoogle Scholar
  35. 35.
    Dai HH, Yang LT, Lin B, Wang CS, Shi G. Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1,2-ethanediol and 1,2-propanediol. J Am Oil Chem Soc. 2009;86(3):261–7.CrossRefGoogle Scholar
  36. 36.
    Wang C, Ding L, Wu Q, Liu F, Wei J, Lu R, et al. Soy polyol-based polyurethane modified by raw and silylated palygorskite. Ind Crop Prod. 2014;57:29–34.CrossRefGoogle Scholar
  37. 37.
    Mendelovici E. Infrared study of attapulgite and HCl treated attapulgite. Clays Clay Miner. 1973;21(2):115–9.CrossRefGoogle Scholar
  38. 38.
    Myriam M, Suarez M, Martin-Pozas JM. Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays Clay Miner. 1998;46(3):225–31.CrossRefGoogle Scholar
  39. 39.
    González F, Pesquera C, Benito I. Thermal investigation of acid-activated attapulgites: influence of isomorphic substitution in the octahedral sheet. Thermochim Acta. 1992;194:239–46.CrossRefGoogle Scholar
  40. 40.
    Gonzalez F, Pesquera C, Benito I, Mendioroz S, Pajares JA. Mechanism of acid activation of magnesic palygorskite. Clays Clay Miner. 1989;37(3):258–62.CrossRefGoogle Scholar
  41. 41.
    Boudriche L, Calvet R, Hamdi B, Balard H. Effect of acid treatment on surface properties evolution of attapulgite clay: an application of inverse gas chromatography. Colloids Surf A Physicochem Eng Asp. 2011;392(1):45–54.CrossRefGoogle Scholar
  42. 42.
    Tian M, Qu C, Feng Y, Zhang L. Structure and properties of fibrillar silicate/SBR composites by direct blend process. J Mater Sci. 2003;38(24):4917–24.CrossRefGoogle Scholar
  43. 43.
    Wang LH, Sheng J. Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer. 2005;46(16):6243–9.CrossRefGoogle Scholar
  44. 44.
    Guo N, Wang J-S, Li J, Teng Y-G, Zhai Y-Z. Dynamic adsorption of Cd2+ onto acid-modified attapulgite from aqueous solution. Clays Clay Miner. 2014;62(5–6):415–24.CrossRefGoogle Scholar
  45. 45.
    Chartoff RP, Weissman PT, Sircar A. The application of dynamic mechanical methods to Tg determination in polymers: an overview. Assignment of the glass transition. West Conshohocken: ASTM International; 1994.Google Scholar
  46. 46.
    Yan W, Yuan P, Chen M, Wang L, Liu D. Infrared spectroscopic evidence of a direct addition reaction between palygorskite and pyromellitic dianhydride. Appl Surf Sci. 2013;265:585–90.CrossRefGoogle Scholar
  47. 47.
    Xie H, Liu B, Yang H, Wang Z, Shen J, Cheng R. Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4’-diaminodiphenylmethane/4,4’-diaminodiphenylsulfone epoxy composites. J Appl Polym Sci. 2006;100(1):295–8.CrossRefGoogle Scholar
  48. 48.
    Wang C, Wu Q, Liu F, An J, Lu R, Xie H, et al. Synthesis and characterization of soy polyol-based polyurethane nanocomposites reinforced with silylated palygorskite. Appl Clay Sci. 2014;101:246–52.CrossRefGoogle Scholar
  49. 49.
    El-Aasser M, Hu R, Dimonie V, Sperling L. Morphology, design and characterization of IPN-containing structured latex particles for damping applications. Colloids Surf A Physicochem Eng Asp. 1999;153(1):241–53.CrossRefGoogle Scholar
  50. 50.
    Sun Y, Xu K, Zhang Y, Zhang J, Chen R, Yuan Z, et al. Organic montmorillonite reinforced epoxy mortar binders. Constr Build Mater. 2016;107:378–84.CrossRefGoogle Scholar
  51. 51.
    Yin H, Zhang Y, Sun Y, Xu W, Yu D, Xie H, et al. Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct. 2015;48(11):3825–35.CrossRefGoogle Scholar
  52. 52.
    Jiang Y, Liu Y, Gong J, Li C, Xi Z, Cai J, et al. Microstructures, thermal and mechanical properties of epoxy asphalt binder modified by SBS containing various styrene-butadiene structures. Mater Struct. 2018;51(4):86.CrossRefGoogle Scholar
  53. 53.
    Yak S. Advances in interpenetrating polymer networks. In: Klempner D, Frisch KC, editors. Lancaster: Technomic Publishing Company; 1994.Google Scholar
  54. 54.
    Liu Y, Zhang J, Chen R, Cai J, Xi Z, Xie H. Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties. Constr Build Mater. 2017;137:55–65.CrossRefGoogle Scholar
  55. 55.
    Pan B, Yue Q, Ren J, Wang H, Jian L, Zhang J, et al. A study on attapulgite reinforced PA6 composites. Polym Test. 2006;25(3):384–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Key Laboratory of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.Department of Polymer Materials and Engineering, School of Materials EngineeringYancheng Institute of TechnologyYanchengChina

Personalised recommendations