Advertisement

Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube

  • Mohamad Omidi
  • A. Ali Rabienataj DarziEmail author
  • Mousa Farhadi
Article
  • 7 Downloads

Abstract

Turbulent flow characteristics and heat transfer applications of a twisted heat exchanger with 3-lobed cross section along with Y-tape insert are numerically studied. The working fluids for the simulations are pure water and water–Al2O3 nanofluid using two-phase mixture model. The study is carried out for various nanofluid volume fractions of 0.01, 0.02 and 0.03 with Reynolds number in the range of 5000–20,000. The effect of nanoparticles in heat transfer augmentation for smooth and lobed tubes is discussed based on presenting the highest thermal performance, which is a relation between heat transfer rate and pressure loss. Results show that implementing the twisted tube with Y-tape insert enhances the heat transfer more than the twisted tube. Relative Nusselt numbers for twisted tubes decrease with Reynolds number in comparison with the plain tube. Turbulent intensity, swirl number and tangential velocity of twisted tube with insert are higher than empty twisted tube indicating that inserting the Y-tape intensifies the turbulence and disturbs the fluid flow further. On the other hand, although the twisted tube increases the pressure drop more than plain tube, the case with Y-tape drastically increases the friction factor. So, the thermal performance of twisted tube with insert is lower than empty twisted tube. Adding nanoparticles to the base fluid has different influence on the investigated cases. It augments the relative Nusselt number inside plain tube and empty twisted tube with slight increment in friction factor. Increasing the nanoparticles concentration enhances the heat transfer rates for these cases while it does not increase the relative Nusselt number inside twisted tube with Y-tape insert at high Reynolds number and nanoparticle concentration. Moreover, it can be found that twisted tube with or without Y-tape insert is more efficient at low Reynolds number in comparison with the plain tube.

Keywords

Turbulent heat transfer Lobed tube Y-tape insert Swirling flow Nanofluid 

List of symbols

Cp

Thermal capacity (kJ kg−1 K−1)

D

Tube diameter (m)

k

Thermal conductivity of fluid (W mK−1)

Re

Reynolds number \(\left( { = \frac{uD}{\nu }} \right)\)

Nu

Nusselt number (hD k−1)

Pr

Prandtl number \(\left( { = \frac{{\mu C_{\text{p}} }}{k}} \right)\)

f

Friction factor coefficient \(\left( { = \frac{2d}{L}\frac{\Delta P}{{\rho u^{2} }}} \right)\)

dp

Nanoparticle diameter

T

Temperature (K)

u

Velocity (m s−1)

\(\Delta P\)

Pressure difference

n

Lobe number

Greek symbols

φ

Volume fraction of nanoparticles

μ

Dynamic viscosity (kg m−1 s−1)

υ

Kinematic viscosity (m2 s−1)

ρ

Density of the fluid

Subscripts

bf

Base fluid

nf

Nanofluid

p

Nanoparticle

B

Brownian

eff

Effective

Notes

References

  1. 1.
    Rashidi S, Kashefi MH, Hormozi F. Potential applications of inserts in solar thermal energy systems—a review to identify the gaps and frontier challenges. Sol Energy. 2018;171:929–52.CrossRefGoogle Scholar
  2. 2.
    Selimefendigil F, Öztop HF. Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int J Heat Mass Transf. 2018;117:331–43.CrossRefGoogle Scholar
  3. 3.
    Selimefendigil F, Öztop HF. Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation. J Taiwan Inst Chem Eng. 2017;70:168–78.CrossRefGoogle Scholar
  4. 4.
    Javadzadegan A, Moshfegh A, Afrouzi HH, Omidi M. Magnetohydrodynamic blood flow in patients with coronary artery disease. Comput Methods Programs Biomed. 2018;163:111–22.CrossRefGoogle Scholar
  5. 5.
    Omidi M, Farhadi M, Jafari M. A comprehensive review on double pipe heat exchangers. Appl Therm Eng. 2017;110:1075–90.CrossRefGoogle Scholar
  6. 6.
    Akbarzadeh M, Rashidi S, Masoodi R, Samimi-Abianeh O. Effect of transverse twisted baffles on performance and irreversibilities in a duct. J Thermophys Heat Transf. 2019;33:49–62.CrossRefGoogle Scholar
  7. 7.
    Rashidi S, Akbarzadeh M, Masoodi R, Languri E. Thermal-hydraulic and entropy generation analysis for turbulent flow inside a corrugated channel. Int J Heat Mass Transf. 2017;109:812–23.CrossRefGoogle Scholar
  8. 8.
    Rashidi S, Zade NM, Esfahani JA. Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chem Eng Process. 2017;117:27–37.CrossRefGoogle Scholar
  9. 9.
    Zade NM, Akar S, Rashidi S, Esfahani JA. Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three dimensional tube. Appl Therm Eng. 2017;124:413–21.CrossRefGoogle Scholar
  10. 10.
    Omidi M, Farhadi M, Darzi AAR. Numerical study of heat transfer on using lobed cross sections in helical coil heat exchangers: effect of physical and geometrical parameters. Energy Convers Manag. 2018;176:236–45.CrossRefGoogle Scholar
  11. 11.
    Naphon P. Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes. Int Commun Heat Mass Transf. 2006;33(6):753–63.CrossRefGoogle Scholar
  12. 12.
    Naphon P. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert. Int Commun Heat Mass Transf. 2006;33(2):166–75.CrossRefGoogle Scholar
  13. 13.
    Xu X, Ge X, Qian Y, Zhang B, Wang H, Yang Q. Effect of nozzle diameter on bubble generation with gas self-suction through swirling flow. Chem Eng Res Des. 2018;138;13–20.CrossRefGoogle Scholar
  14. 14.
    Li G, Hall P, Miles N, Wu T. Improving the efficiency of ‘clean-in-place’ procedures using a four-lobed swirl pipe: a numerical investigation. Comput Fluids. 2015;108:116–28.CrossRefGoogle Scholar
  15. 15.
    Tang X, Dai X, Zhu D. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. Int J Heat Mass Transf. 2015;90:523–41.CrossRefGoogle Scholar
  16. 16.
    Jafari M, Farhadi M, Sedighi K. An experimental study on the effects of a new swirl generator on thermal performance of a circular tube. Int Commun Heat Mass Transf. 2017;87:277–87.CrossRefGoogle Scholar
  17. 17.
    Jafari M, Dabiri S, Farhadi M, Sedighi K. Effects of a three-lobe swirl generator on the thermal and flow fields in a heat exchanging tube: an experimental and numerical approach. Energy Convers Manag. 2017;148:1358–71.CrossRefGoogle Scholar
  18. 18.
    Jafari M, Farhadi M, Sedighi K. Thermal performance enhancement in a heat exchanging tube via a four-lobe swirl generator: an experimental and numerical approach. Appl Therm Eng. 2017;124:883–96.CrossRefGoogle Scholar
  19. 19.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.003.Google Scholar
  20. 20.
    Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018:1–15Google Scholar
  21. 21.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.CrossRefGoogle Scholar
  22. 22.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7070-9.Google Scholar
  23. 23.
    Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7164-4.Google Scholar
  24. 24.
    Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct–a numerical study. Appl Therm Eng. 2018;130:135–48.CrossRefGoogle Scholar
  25. 25.
    Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7350-4.Google Scholar
  26. 26.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.004.Google Scholar
  27. 27.
    Selimefendigil F, Öztop HF. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.CrossRefGoogle Scholar
  28. 28.
    Selimefendigil F, Öztop HF, Chamkha AJ. Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder. Int Commun Heat Mass Transf. 2017;87:40–51.CrossRefGoogle Scholar
  29. 29.
    Selimefendigil F, Öztop HF. Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int J Mech Sci. 2018;146:9–24.CrossRefGoogle Scholar
  30. 30.
    Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132(2):1189–200.  https://doi.org/10.1007/s10973-017-6907-y.CrossRefGoogle Scholar
  31. 31.
    Guo W, Li G, Zheng Y, Dong C. Laminar convection heat transfer and flow performance of Al2O3–water nanofluids in a multichannel-flat aluminum tube. Chem Eng Res Des. 2018;133:255–63.CrossRefGoogle Scholar
  32. 32.
    Khairul M, Saidur R, Rahman M, Alim M, Hossain A, Abdin Z. Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids. Int J Heat Mass Transf. 2013;67:398–403.CrossRefGoogle Scholar
  33. 33.
    Prasad PD, Gupta A, Deepak K. Investigation of trapezoidal-cut twisted tape insert in a double pipe u-tube heat exchanger using Al2O3/water nanofluid. Procedia Mater Sci. 2015;10:50–63.CrossRefGoogle Scholar
  34. 34.
    Khosravi-Bizhaem H, Abbassi A. Effects of curvature ratio on forced convection and entropy generation of nanofluid in helical coil using two-phase approach. Adv Powder Technol. 2018;29(4):890–903.CrossRefGoogle Scholar
  35. 35.
    Darzi AR, Farhadi M, Sedighi K, Shafaghat R, Zabihi K. Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes. Int Commun Heat Mass Transf. 2012;39(9):1425–34.CrossRefGoogle Scholar
  36. 36.
    Demir H, Dalkilic A, Kürekci N, Duangthongsuk W, Wongwises S. Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. Int Commun Heat Mass Transf. 2011;38(2):218–28.CrossRefGoogle Scholar
  37. 37.
    Darzi AR, Farhadi M, Sedighi K, Aallahyari S, Delavar MA. Turbulent heat transfer of Al2O3–water nanofluid inside helically corrugated tubes: numerical study. Int Commun Heat Mass Transf. 2013;41:68–75.  https://doi.org/10.1016/j.icheatmasstransfer.2012.11.006.CrossRefGoogle Scholar
  38. 38.
    Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):153107.CrossRefGoogle Scholar
  39. 39.
    Lee S, Choi S-S, Li S, Eastman J. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.CrossRefGoogle Scholar
  40. 40.
    Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.CrossRefGoogle Scholar
  41. 41.
    Li CH, Williams W, Buongiorno J, Hu L-W, Peterson G. Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/Water Nanofluids. J Heat Transf. 2008;130(4):042407.CrossRefGoogle Scholar
  42. 42.
    Omidi M, Farhadi M, Jafari M. Numerical study on the effect of using spiral tube with lobed cross section in double-pipe heat exchangers. J Therm Analysis and Calorim. 2018.  https://doi.org/10.1007/s10973-018-7579-y.Google Scholar
  43. 43.
    Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D, Ali Akbari O. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water–Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;131–132:1106–16.  https://doi.org/10.1016/j.ijmecsci.2017.07.049.CrossRefGoogle Scholar
  44. 44.
    Andreozzi A, Manca O, Nardini S, Ricci D. Forced convection enhancement in channels with transversal ribs and nanofluids. Appl Therm Eng. 2016;98:1044–53.  https://doi.org/10.1016/j.applthermaleng.2015.12.140.CrossRefGoogle Scholar
  45. 45.
    Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32(8):1598–605.  https://doi.org/10.2514/3.12149.CrossRefGoogle Scholar
  46. 46.
    Darzi AAR, Farhadi M, Lavasani AM. Two phase mixture model of nano-enhanced mixed convection heat transfer in finned enclosure. Chem Eng Res Des. 2016;111:294–304.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mohamad Omidi
    • 1
  • A. Ali Rabienataj Darzi
    • 2
    Email author
  • Mousa Farhadi
    • 1
  1. 1.Faculty of Mechanical EngineeringBabol University of TechnologyBabolIran
  2. 2.Department of Mechanical EngineeringUniversity of MazandaranBabolsarIran

Personalised recommendations