Research and development on composite nanofluids as next-generation heat transfer medium

  • Vivek Kumar
  • Jahar SarkarEmail author


Nanocomposite is a nanotechnology-based multiphase, high-performance composite material having combination of properties, which has been emerged as one of the promising research and development activities. Recently, nanocomposites have shown significant application opportunities for several sectors of biotechnology, engineering, and medical sciences, and its dispersed fluids (composite nanofluids) have gained huge interest and demand in wide area of engineering applications, particularly for heat transfer intensification. The main aim of the present review is to summarize the recent advances in nanocomposite-dispersed nanofluids. The synthesized methods, characterization, and applications of nanocomposites as well as the preparation, stability analysis, thermophysical, optical and electrical properties, heat transfer and pressure drop characteristics and applications of nanocomposite-dispersed nanofluids are well-grouped and discussed. Present review reveals that the nanocomposite with proper combination of nanomaterials yields superior performance characteristics compared to the individual alone for application in nanofluids, although many related aspects are still unexplored. Hence, the challenges and opportunities for future research are also identified, which will be useful for the newcomers and manufacturers in this field.


Nanocomposite Hybrid nanofluid Synthesis Characterization Heat transfer Application 



Atomic absorption spectroscopy


Atomic force microscopy


Carbon nanotube


Differential scanning calorimetry


Fourier transform infrared spectroscope


Gum arabic


Hydrogen exfoliation graphene


Heat transfer coefficient


High-resolution transmission electron microscope


Multiwall carbon nanotube


Poly l-lactic acid




Reduced graphene oxide


Sodium dodecyl benzene sulfonate


Scanning electron microscope


Single-wall carbon nanotube


Transmission electron microscope


Thermogravimetric analysis


Vibrating sample magnetometer


X-ray diffraction



  1. 1.
    Cao G. Nanostructures and nanomaterials—synthesis, properties and applications. London: Imperial College Press; 2004.CrossRefGoogle Scholar
  2. 2.
    Faraday M. The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond. 1857;147:145–81.CrossRefGoogle Scholar
  3. 3.
    Saravanan P, Gopalan R, Chandrasekaran V. Synthesis and characterisation of nanomaterials. Def Sci J. 2008;58:504–16.CrossRefGoogle Scholar
  4. 4.
    Kumar SK, Krishnamoorti R. Nanocomposites: structure, phase behavior, and properties. Annu Rev Chem Biomol Eng. 2010;1:37–58.CrossRefPubMedGoogle Scholar
  5. 5.
    Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009;12:1–39.CrossRefGoogle Scholar
  6. 6.
    Young RJ, Kinloch IA, Gong L, Novoselov KS. The mechanics of graphene nanocomposites: a review. Compos Sci Technol. 2012;72:1459–76.CrossRefGoogle Scholar
  7. 7.
    Chatterjee A, Hansora D. Graphene based functional hybrid nanostructures: preparation, properties and applications. Mater Sci Forum. 2016;842:53–75.CrossRefGoogle Scholar
  8. 8.
    Choi SUS. Enhancingthermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expo. 1995;231:99–105.Google Scholar
  9. 9.
    Sarkar J. A critical review of heat transfer correlations of nanofluids. Renew Sustain Energy Rev. 2011;15:3271–7.CrossRefGoogle Scholar
  10. 10.
    Devonian DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;60:21–40.CrossRefGoogle Scholar
  11. 11.
    Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications—a state-of-the-art review. Int J Heat Mass Transf. 2018;125:82–103.CrossRefGoogle Scholar
  12. 12.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.CrossRefGoogle Scholar
  13. 13.
    Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018. Scholar
  14. 14.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. Scholar
  15. 15.
    Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew Energy. 2018;118:536–45.CrossRefGoogle Scholar
  16. 16.
    Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2018.
  17. 17.
    Akbarzadeh M, Rashidi S, Karimi N, Mahian O. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2018. Scholar
  18. 18.
    Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132:1189–200.CrossRefGoogle Scholar
  19. 19.
    Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2018. Scholar
  20. 20.
    Mahian O, Kolsi L, Amani M, et al. Recent advances in modelling and simulation of nanofluid flows part I: fundamentals and theory. Phys Rep. 2018. Scholar
  21. 21.
    Mahian O, Kolsi L, Amani M, et al. Recent advances in modelling and simulation of nanofluid flows part II: applications. Phys Rep. 2018. Scholar
  22. 22.
    Sarkar J, Ghosh P, Adil A. A review on hybrid nano fluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.CrossRefGoogle Scholar
  23. 23.
    Sundar LS, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer andfriction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98.CrossRefGoogle Scholar
  24. 24.
    Babu JAR, Kumar KK, Rao SS. State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev. 2017;77:551–65.CrossRefGoogle Scholar
  25. 25.
    Sidik NAC, Jamil MM, Japar WMAA, Adamu IM. A review on preparation methods, stability and applications of hybridnanofluids. Renew Sustain Energy Rev. 2017;80:1112–22.CrossRefGoogle Scholar
  26. 26.
    Nabil MF, Azmi WH, Hamid KA, Zawawi NNM, Priyandoko G, Mamat R. Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int Commun Heat Mass Transf. 2017;83:30–9.CrossRefGoogle Scholar
  27. 27.
    Kumar DD, Arasu AV. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew Sustain Energy Rev. 2018;81:1669–89.CrossRefGoogle Scholar
  28. 28.
    Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Prod. 2018;190:169–92.CrossRefGoogle Scholar
  29. 29.
    Ennas G, Mei A, Musinu A, Piccaluga G, Pinna G, Solinas S. Sol ± gel preparation and characterization of Ni–SiO2 nanocomposites. J Non Cryst Solids. 1998;232–234:587–93.CrossRefGoogle Scholar
  30. 30.
    Shahadat M, Teng TT, Rafatullah M, Arshad M. Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloids Surf B Biointerfaces. 2014;126:121–37.CrossRefPubMedGoogle Scholar
  31. 31.
    Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. Cambridge: Academic Press; 1990.Google Scholar
  32. 32.
    Ansari F, Sobhani A, Salavati-niasari M. Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method. J Magn Magn Mater. 2016;410:27–33.CrossRefGoogle Scholar
  33. 33.
    Li J, Hao Y, Li H, Xia M, Sun X, Wang L. Direct synthesis of CeO2/SiO2 mesostructured composite materials via sol-gel process. Microporous Mesoporous Mater. 2009;120:421–5.CrossRefGoogle Scholar
  34. 34.
    TianKhoon L, Hassan NH, Rahman MYA, Vedarajan R, Matsumi N, Ahmad A. One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ion. 2015;276:72–9.CrossRefGoogle Scholar
  35. 35.
    Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett. 2013;8:1–10.CrossRefGoogle Scholar
  36. 36.
    Tong H, Enomoto N, Inada M, Tanaka Y, Hojo J. Hydrothermal synthesis of mesoporous TiO2–SiO2 core-shell composites for dye-sensitized solar cells. Electrochim Acta. 2014;130:329–34.CrossRefGoogle Scholar
  37. 37.
    Abdal-hay A, Hamdy AS, Abdel-Jaber GT, Barakat NAM, Ebnalwaled AA, Khalil KA. A facile manufacturing of Ag/SiO2nanofibers and nanoparticles composites via a simple hydrothermal plasma method. Ceram Int. 2014;41:12447–52.CrossRefGoogle Scholar
  38. 38.
    Karunakaran C, Sakthiraadha S, Gomathisankar P, Vinayagamoorthy P. Fe3O4/SnO2 nanocomposite: hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities. Powder Technol. 2013;246:635–42.CrossRefGoogle Scholar
  39. 39.
    Liu R, Tian H, Yang A, Zha F, Ding J, Chang Y. Preparation of HZSM-5 membrane packed CuO–ZnO–Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether. Appl Surf Sci. 2015;345:1–9.CrossRefGoogle Scholar
  40. 40.
    He G, Fan H, Ma L, Wang K, Liu C, Ding D, Chen L. Dumbbell-like ZnO nanoparticles-CeO2 nanorods composite by one-pot hydrothermal route and their electrochemical charge storage. Appl Surf Sci. 2016;366:129–38.CrossRefGoogle Scholar
  41. 41.
    Luo T, Wei X, Zhao H, Cai G, Zheng X. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceram Int. 2014;40:10103–9.CrossRefGoogle Scholar
  42. 42.
    Chu X, Hu T, Gao F, Dong Y, Sun W, Bai L. Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method. Mater Sci Eng B. 2015;193:97–104.CrossRefGoogle Scholar
  43. 43.
    Chen D, Zhang H, Hu S, Li J. Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO–TiO2 nanocomposites. J Phys Chem C. 2008;112:117–22.CrossRefGoogle Scholar
  44. 44.
    Wang N, Li X, Wang Y, Hou Y, Zou X, Chen G. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Mater Lett. 2008;62:3691–3.CrossRefGoogle Scholar
  45. 45.
    Wang H, Zhao W, Zhang Y, Zhang S, Wang Z, Zhao D. A facile in situ hydrothermal synthesis of SrTiO3/TiO2 microsphere composite. Solid State Commun. 2016;236:27–31.CrossRefGoogle Scholar
  46. 46.
    Maddah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102.CrossRefGoogle Scholar
  47. 47.
    Aslani A, Bazmandegan-Shamili A, Barzegar S. Solvothermal synthesis, characterization and optical properties of ZnO and ZnO–Al2O3 mixed oxide nanoparticles. Phys B Condens Matter. 2010;405:3585–9.CrossRefGoogle Scholar
  48. 48.
    Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int. 2013;39:3885–91.CrossRefGoogle Scholar
  49. 49.
    Nguyen HTH, Ohtani M, Kobiro K. One-pot synthesis of SiO2–CeO2 nanoparticle composites with enhanced heat tolerance. Microporous Mesoporous Mater. 2019;273:35–40.CrossRefGoogle Scholar
  50. 50.
    Chen Z, Zhan G, Wu Y, He X, Lu Z. Sol–gel–hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology. J Alloys Compd. 2014;587:692–7.CrossRefGoogle Scholar
  51. 51.
    Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Asp. 2011;388:41–8.CrossRefGoogle Scholar
  52. 52.
    Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.CrossRefGoogle Scholar
  53. 53.
    Vollath D, Szabo DV. Nanocoated particles: a special type of ceramic powder. Nanostruct Mater. 1994;4:927–38.CrossRefGoogle Scholar
  54. 54.
    Vollath D, Szabó DV, Hausselt J. Synthesis and properties of ceramic nanoparticles and nanocomposites. J Eur Ceram Soc. 1997;17:1317–24.CrossRefGoogle Scholar
  55. 55.
    Alsharaeh E, Mussa Y, Ahmed F, Aldawsari Y, Al-Hindawi M, Sing GK. Novel route for the preparation of cobalt oxide nanoparticles/reduced graphene oxide nanocomposites and their antibacterial activities. Ceram Int. 2016;42:3407–10.CrossRefGoogle Scholar
  56. 56.
    Ghaseminezhad SM, Shojaosadati SA. Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch. Carbohydr Polym. 2016;144:454–63.CrossRefPubMedGoogle Scholar
  57. 57.
    Baby TT, Sundara R. Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid. AIP Adv. 2013;3:012111.CrossRefGoogle Scholar
  58. 58.
    Barzegar Vishlaghi M, Ataie A. Investigation on solid solubility and physical properties of Cu–Fe/CNT nano-composite prepared via mechanical alloying route. Powder Technol. 2014;268:102–9.CrossRefGoogle Scholar
  59. 59.
    Nine MJ, Munkhbayar B, Rahman MS, Chung H, Jeong H. Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater Chem Phys. 2013;141:636–42.CrossRefGoogle Scholar
  60. 60.
    Paul G, Philip J, Raj B, Das PK, Manna I. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. Int J Heat Mass Transf. 2011;54:3783–8.CrossRefGoogle Scholar
  61. 61.
    Mechiri SK, Vasu V, Gopal AV. Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles. Exp Heat Transf. 2016. Scholar
  62. 62.
    Qadri MZ, Chandran RR, Ravindra S, Velmurugan V. Synthesis and testing of graphene/cuprous oxide composite based nano fluids for engine-coolants. Mater Today Proc. 2015;2:4640–5.CrossRefGoogle Scholar
  63. 63.
    Yan J, Wang M-Q, Du S-G, Wang B, Zhang X-S. Preparation and characterization of micro-copper flakes/nano-TiO2 composite particles. Ceram Int. 2015;41:3365–70.CrossRefGoogle Scholar
  64. 64.
    Balayeva NO, Mamiyev ZQ. Synthesis and characterization of Ag2S/PVA-fullerene (C60) nanocomposites. Mater Lett. 2016;175:231–5.CrossRefGoogle Scholar
  65. 65.
    Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, Zubir MNM, Alehashem MS, Kazi SN, Dahari M. Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28.CrossRefGoogle Scholar
  66. 66.
    Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Therm Fluid Sci. 2014;52:104–15.CrossRefGoogle Scholar
  67. 67.
    Li X, Chen Y, Mo S, Jia L, Shao X. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim Acta. 2014;595:6–10.CrossRefGoogle Scholar
  68. 68.
    AfzaliTabar M, Alaeib M, Khojasteh RR, Motiee F, Rashidi AM. Preference of nanoporous graphene to single-walled carbon nanotube (SWCNT) for preparing silica nanohybrid Pickering emulsion for potential chemical enhanced oil recovery (C-EOR). Sci Iran F. 2017;24:3491–9.Google Scholar
  69. 69.
    Kaur K, Jeet K. Electrical conductivity of water-based nanofluids prepared with graphene–carbon nanotube hybrid. Fuller Nanotub Car Nanostruct. 2017;25:726–34.CrossRefGoogle Scholar
  70. 70.
    Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashid A. Investigation of Fe3O4/graphene nanohybrid heat transfer properties: experimental approach. Int Commun Heat Mass Transf. 2017;87:30–9.CrossRefGoogle Scholar
  71. 71.
    Trinh PV, Anh NN, Thang BH, Quang LD, Hong NT, Hong NM, Khoi PH, Minh PN, Hong PN. Enhanced thermal conductivity of nanofluid-based ethylene glycol containing Cu nanoparticles decorated on a Gr–MWCNT hybrid material. RSC Adv. 2017;7:318–26.CrossRefGoogle Scholar
  72. 72.
    Trinh PV, Anh NN, Hong NT, Hong PN, Minh PN, Thang BH. Experimental study on the thermal conductivity of ethylene glycol-based nanofluid containing Gr–CNT hybrid material. J Mol Liq. 2018;269:344–53.CrossRefGoogle Scholar
  73. 73.
    Lemes MA, Rabelo D, Oliveira AE. A novel method to evaluate nanofluid stability using multivariate image analysis. Anal Methods. 2017;9:5826–33.CrossRefGoogle Scholar
  74. 74.
    Mehrali M, Sadeghinezhad E, Akhiani AR, Latibari ST, Metselaar HSC, Kherbeet ASh, Mehrali M. Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field. Powder Technol. 2017;308:149–57.CrossRefGoogle Scholar
  75. 75.
    Mehrali M, Ghatkesar MK, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Appl Energy. 2018;224:103–15.CrossRefGoogle Scholar
  76. 76.
    Varga T, Ballai G, Vásárhelyi L, Haspel H, Kukovz A, Kónya Z. Co4N/nitrogen-doped graphene: a non-noble metal oxygen reduction electrocatalyst for alkaline fuel cells. Appl Catalysis B Environ. 2018;237:826–34.CrossRefGoogle Scholar
  77. 77.
    Dubal DP, Daniel Rueda-Garcia D, Marchante C, Benages R, Gomez-Romero P. Hybrid graphene-polyoxometalates nanofluids as liquid electrodes for dual energy storage in novel flow cells. Chem Rec. 2018;18:1076–84.CrossRefPubMedGoogle Scholar
  78. 78.
    Leong KY, Razali I, Ahmad KZK, Ong HC, Ghazali MJ, Rahman MRA. Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: an experimental approach. Int Commun Heat Mass Transf. 2018;90:23–8.CrossRefGoogle Scholar
  79. 79.
    Chen L, Yu W, Xie H. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technol. 2012;231:18–20.CrossRefGoogle Scholar
  80. 80.
    Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluid. Int Commun Heat Mass Transf. 2014;52:73–83.CrossRefGoogle Scholar
  81. 81.
    Sundar LS, Singh MK, Ramana EV, Singh B, Grácio J, Sousa ACM. Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci Rep. 2014;4:4039.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Guan JG, Wang W, Gong RZ, Yuan RZ, Gan LH, Tam KC. One-step synthesis of cobalt-phthalocyanine/iron nanocomposite particles with high magnetic susceptibility. Langmuir. 2002;18:4198–204.CrossRefGoogle Scholar
  83. 83.
    Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Montazer E, Arzani HK, Sadri R, Dahari M, Kazi SN. Nanofluid based on activated hybrid of biomass carbon/graphene oxide:synthesis, thermo-physical and electrical properties. Int Commun Heat Mass Transf. 2016;72:10–5.CrossRefGoogle Scholar
  84. 84.
    Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 2015;5:105003.CrossRefGoogle Scholar
  85. 85.
    Karimi A, Sadatlu MAA, Saberi B, Shariatmadar H, Ashjaee M. Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids. Adv Powder Technol. 2015;26:1529–36.CrossRefGoogle Scholar
  86. 86.
    Davachi SM, Kaffashi B, Torabinejad B, Zamanian A, Seyfi J, Hejazi I. Investigating thermal, mechanical and rheological properties of novel antibacterial hybrid nanocomposites based on PLLA/triclosan/nano-hydroxyapatite. Polymer (Guildf). 2016;90:232–41.CrossRefGoogle Scholar
  87. 87.
    Bhanvase BA, Kamath SD, Patil UP, Patil HA, Pandit AB, Sonawane SH. Intensification of heat transfer using PANI nanoparticles and PANI-CuO nanocomposite based nanofluid. Chem Eng Process Process Intensif. 2016;104:172–80.CrossRefGoogle Scholar
  88. 88.
    Murugadoss G, Jayavel R, Thangamuthu R, Kumar MR. PbO/CdO/ZnO and PbS/CdS/ZnS nanocomposites: studies on optical, electrochemical and thermal properties. J Lumin. 2016;170:78–89.CrossRefGoogle Scholar
  89. 89.
    Jonjana S, Phuruangrat A, Thongtem T, Thongtem S. Synthesis, analysis and photocatalysis of AgBr/Bi2MoO6 nanocomposites. Mater Lett. 2016;172:11–4.CrossRefGoogle Scholar
  90. 90.
    Tajizadegan H, Jafari M, Rashidzadeh M, Saffar-Teluri A. A high activity adsorbent of ZnO–Al2O3 nanocomposite particles: synthesis, characterization and dye removal efficiency. Appl Surf Sci. 2013;276:317–22.CrossRefGoogle Scholar
  91. 91.
    Sundar LS, Irurueta GO, Ramana EV, Singh MK, Sousa ACM. Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND–Co3O4) nanocomposite. Case Stud Therm Eng. 2016;7:66–77.CrossRefGoogle Scholar
  92. 92.
    Sundar L, Ramana E, Graça M, Singh M, Sousa A. Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transf. 2016;73:62–74.CrossRefGoogle Scholar
  93. 93.
    Parekh K, Upadhyay RV, Belova L, Rao KV. Ternary monodispersed Mn0.5Zn0.5Fe2O4 ferrite nanoparticles: preparation and magnetic characterization. Nanotechnology. 2006;2006(17):5970–5.CrossRefGoogle Scholar
  94. 94.
    Parekh K. Thermo-magnetic properties of ternary polydispersed Mn0.5Zn0.5Fe2O4 ferrite magnetic fluid. Solid State Commun. 2014;187:33–7.CrossRefGoogle Scholar
  95. 95.
    Sundar LS, Singh MK, Ferro MC, Sousa ACM. Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids. Int Commun Heat Mass Transf. 2017;84:1–10.CrossRefGoogle Scholar
  96. 96.
    Wang Y, Jin Y, Zhao C, Pan E, Jia M. Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance. Appl Surf Sci. 2018;458:1035–42.CrossRefGoogle Scholar
  97. 97.
    Lerner MI, Glazkova EA, Lozhkomoev AS, Svarovskaya NV, Bakina OV, Pervikov AV, Psakhie SG. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol. 2016;295:307–14.CrossRefGoogle Scholar
  98. 98.
    Chrissanthopoulos A, Kyriazis FC, Nikolakis V, Giannakopoulos IG, Dracopoulos V, Baskoutas S, et al. ZnO/zeolite hybrid nanostructures: synthesis, structure, optical properties, and simulation. Thin Solid Films. 2014;555:21–7.CrossRefGoogle Scholar
  99. 99.
    Han ZH, Yang B, Kim SH, Zachariah MR. Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology. 2007;18:105701.CrossRefGoogle Scholar
  100. 100.
    Hashem AM, Abuzeid HM, Abdel-Ghany AE, Mauger A, Zaghib K, Julien CM. SnO2–MnO2 composite powders and their electrochemical properties. J Power Sourc. 2012;202:291–8.CrossRefGoogle Scholar
  101. 101.
    Li X, Fang L, Chen B, He D. High-pressure and high-temperature synthesis and study of the thermal properties of ZrW2O8/Cu composites. Physica B. 2016;487:37–41.CrossRefGoogle Scholar
  102. 102.
    Cheedarala RK, Park EJ, Park YB, Park HW. Highly wettable CuO:graphene oxide core-shell porous nanocomposites for enhanced critical heat flux. Phys Status Solidi Appl Mater Sci. 2015;212:1756–66.CrossRefGoogle Scholar
  103. 103.
    Xue B, Zou Y. High photo catalytic activity of ZnO–graphene composite. J Colloid Interface Sci. 2018;529:306–13.CrossRefPubMedGoogle Scholar
  104. 104.
    Akilu S, Baheta AT, Said MA, Minea AA, Sharma KV. Properties of glycerol and ethylene glycol mixture based SiO2–CuO/C hybrid nanofluid for enhanced solar energy transport. Sol Energy Mater Sol Cells. 2018;179:118–28.CrossRefGoogle Scholar
  105. 105.
    Yanfang L, Bing H, Yazhi Y, Guoliang L, Xinlin H. One-pot surfactant-free synthesis of transition metal/ZnO nanocomposites for catalytic hydrogenation of CO2 to methanol. Acta Phys Chim Sin. 2019;35:223–9.Google Scholar
  106. 106.
    Tao P, Shu L, Zhang J, Lee C, Ye Q, Guo H, Deng T. Silicone oil-based solar-thermal fluids dispersed with PDMS-modifed Fe3O4@graphene hybrid nanoparticles. Prog Nat Sci Mater Int. 2018. Scholar
  107. 107.
    Voevodin AA, Zabinski JS. Nanocomposite and nanostructured tribological materials for space applications. Compos Sci Technol. 2005;65:741–8.Google Scholar
  108. 108.
    Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos Part B. 2015;77:402–20.CrossRefGoogle Scholar
  109. 109.
    Velmurugan V, Srinivasarao U, Ramachandran R, Saranya M, Grace AN. Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater Res Bull. 2016;84:145–51.CrossRefGoogle Scholar
  110. 110.
    Zeng J, Xuan Y, Duan H. Tin–silica–silver composite nanoparticles for medium-to-high temperature volumetric absorption solar collectors. Sol Energy Mater Sol Cells. 2016;157:930–6.CrossRefGoogle Scholar
  111. 111.
    Hjerrild NE, Mesgari S, Crisostomo F, Scott JA, Amal R, Taylor RA. Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluid. Sol Energy Mater Sol Cells. 2016;147:281–7.CrossRefGoogle Scholar
  112. 112.
    Iijima S. Helical microtubes of graphitic carbon. Lett Nat. 1991;353:737–40.CrossRefGoogle Scholar
  113. 113.
    Nazar LF, Zhang Z, Zinkweg D. Insertion of poly(p-phenylenevinylene) in layered MoO3. J Am Chem Soc. 1992;114:6239–40.CrossRefGoogle Scholar
  114. 114.
    Vassiliou JK, Ziebarth RP, DiSalvo FJ. Preparation of a novel polymer blend of poly (ethylene oxide) and the inorganic polymer molybdenum selenide (Mo3Se3-). infin.: infrared absorption of thin films. Chem Mater. 1990;2:738–41.CrossRefGoogle Scholar
  115. 115.
    Beecroft LL, Ober CK. Nanocomposite materials for optical applications. Chem Mater. 1997;9:1302–17.CrossRefGoogle Scholar
  116. 116.
    Shrivastava S, Jadon N, Jain R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. Trends Anal Chem. 2016;82:55–67.CrossRefGoogle Scholar
  117. 117.
    Presting H, König U. Future nanotechnology developments for automotive applications. Mater Sci Eng C. 2003;23:737–41.CrossRefGoogle Scholar
  118. 118.
    Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res. 2011;50:3071–7.CrossRefGoogle Scholar
  119. 119.
    Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39:6415–25.CrossRefGoogle Scholar
  120. 120.
    Chakraborty S, Sarkar I, Haldar K, Kanta S, Chakraborty S. Applied clay science synthesis of Cu–Al layered double hydroxide nanofluid and characterization of its thermal properties. Appl Clay Sci. 2015;107:98–108.CrossRefGoogle Scholar
  121. 121.
    Batmunkh M, Tanshen MR, Nine MJ, Myekhlai M, Choi H, Chung H, Jeong H. Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle. Ind Eng Chem Res. 2014;53:8445–51.CrossRefGoogle Scholar
  122. 122.
    Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluid. Thermochim Acta. 2012;549:87–94.CrossRefGoogle Scholar
  123. 123.
    Baghbanzadeh M, Rashidi A, Soleimanisalim AH, Rashtchian D. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8.CrossRefGoogle Scholar
  124. 124.
    Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem. 2011;21:9702.CrossRefGoogle Scholar
  125. 125.
    Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C. 2011;115:8527–33.CrossRefGoogle Scholar
  126. 126.
    Aravind SSJ, Ramaprabhu S. Graphene wrapped multiwalled carbon nanotubes dispersed nanofluids for heat transfer applications. J Appl Phys. 2012;112:124304.CrossRefGoogle Scholar
  127. 127.
    Aravind SSJ, Ramaprabhu S. Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 2013;3:4199.CrossRefGoogle Scholar
  128. 128.
    Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2–MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.CrossRefGoogle Scholar
  129. 129.
    Mahesh KV, Linsha V, Peer Mohamed A, Ananthakumar S. Processing of 2D-MAXene nanostructures and design of high thermal conducting, rheo-controlled MAXene nanofluids as a potential nanocoolant. Chem Eng J. 2016;297:158–69.CrossRefGoogle Scholar
  130. 130.
    Yarmand H, Gharehkhani S, Farid S, Shirazi S, Goodarzi M, Amiri A, Sarsam WS, Alehashem MS, Dahari M, Kazi SN. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21.CrossRefGoogle Scholar
  131. 131.
    Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Trans Transf. 2007;129:298–307.CrossRefGoogle Scholar
  132. 132.
    Botha SS. Synthesis and characterization of a nanofluids for cooling applications. Ph.D. Dissertation. University of the Western Cape Bellville RSA. 2007.Google Scholar
  133. 133.
    Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.CrossRefGoogle Scholar
  134. 134.
    Shende R, Sundara R. Nitrogen doped hybrid carbon based composite dispersed nano fluids as working fluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells. 2015;140:9–16.CrossRefGoogle Scholar
  135. 135.
    Qiu L, Zheng XH, Su GP, Tang DW. Design and application of a freestanding sensor based on 3ω technique for thermal-conductivity measurement of solids, liquids, and nanopowders. Int J Thermophys. 2013;34:2261–75.CrossRefGoogle Scholar
  136. 136.
    Qiu L, Zheng XH, Zhu J, Tang DW. Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique. Rev Sci Instrum. 2011;82:086110.CrossRefPubMedGoogle Scholar
  137. 137.
    Qiu L, Guo P, Zou H, Feng Y, Zhang X, Pervaiz S, Wen D. Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. Energy Environ Sci. 2018;01:1–7.CrossRefGoogle Scholar
  138. 138.
    Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Angue Mintsa H. Temperature and particle-size dependent viscosity data for water-based nanofluids-hystersis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506.CrossRefGoogle Scholar
  139. 139.
    Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;2014:147059.CrossRefGoogle Scholar
  140. 140.
    Barlak S, Sara ON, Karaipekli A, Yapıcı S. Thermal conductivity and viscosity of nanofluids having nanoencapsulated phase change material. Nanoscale Microscale Thermophys Eng. 2016;20:85–96.CrossRefGoogle Scholar
  141. 141.
    Sundar LS, Singh MK, Sousa ACM. Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: an experimental study. Int J Heat Mass Transf. 2018;117:223–34.CrossRefGoogle Scholar
  142. 142.
    Farbod M, Ahangarpour A. Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids. Phys Lett A. 2016;380:4044–8.CrossRefGoogle Scholar
  143. 143.
    Manasrah AD, Almanassra IW, Marei NN, Al-Mubaiyedh UA, Laoui T, Atieh MA. Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 2018;8:1791–802.CrossRefGoogle Scholar
  144. 144.
    Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Adv. 2014;4:16206.CrossRefGoogle Scholar
  145. 145.
    Sundar LS, Shusmitha K, Singh MK, Sousa ACM. Electrical conductivity enhancement of nanodiamond–nickel (ND–Ni) nanocomposite based magnetic nanofluids. Int Commun Heat Mass Transf. 2014;57:1–7.CrossRefGoogle Scholar
  146. 146.
    Madhesh D, Kalaiselvam S. Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications. J Exp Nanosci. 2015;10:1194–213.CrossRefGoogle Scholar
  147. 147.
    Sundar LS, Singh MK, Otero-Irurueta G, Sousa ACM. Heat transfer and friction factor of multi-walled carbon nanotubes–Fe3O4 nanocomposite nanofluids flow in a tube with/without longitudinal strip inserts. Int J Heat Mass Transf. 2016;100:691–703.CrossRefGoogle Scholar
  148. 148.
    Aghabozorg M, Rashidi A, Mohammadi S. Experimental investigation of heat transfer enhancement of Fe2O3–CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger Mohammad. Exp Therm Fluid Sci. 2016;72:182–9.CrossRefGoogle Scholar
  149. 149.
    Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M. Investigation of laminar convective heat transfer of a novel TiO2–carbon nanotube hybrid water-based nanofluid. Exp Heat Transf. 2016;29:124–38.CrossRefGoogle Scholar
  150. 150.
    Selvakumar P, Suresh S. Use of Al2O3–Cu/water hybrid nanofluid inan electronic heat sink. IEEE Trans Compon Packag Manuf Technol. 2012;2:1600–7.CrossRefGoogle Scholar
  151. 151.
    He Y, Vasiraju S, Que L. Hybrid nanomaterial-based nanofluids for micropower generation. RSC Adv. 2014;4:2433–9.CrossRefGoogle Scholar
  152. 152.
    Al-waeli AHA, Sopian K, Chaichan MT, Kazem HA, Ibrahim A, Mat S, Ruslan MH. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag. 2017;151:693–708.CrossRefGoogle Scholar
  153. 153.
    Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sustain Energy Rev. 2018;82:3656–69.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology (B.H.U.)VaranasiIndia

Personalised recommendations