Thermal conversion of tobacco stem into gaseous products

  • Chunhao Wang
  • Liqing LiEmail author
  • Ruofei Chen
  • Xiancheng Ma
  • Mingming Lu
  • Weiwu Ma
  • Haoyi Peng


The pyrolysis of tobacco stem (TS), a potential source of lignocellulosic biomass, is investigated, focusing on gas formation via thermogravimetric analysis–mass spectrometry to obtain accurate gaseous product distributions under various conditions. The results revealed that the majority of the gaseous products were formed under 900 K with a shoulder pyrolysis region (600–800 K) as the main source of gas formation, where the formation curve of CO2 was used to track the pyrolysis of hemicellulose, cellulose, and lignin. The formation of four aromatics from lignin occurred over the range of 500–900 K, roughly in the sequence of phenol, toluene, xylene, and benzene. Furthermore, the demineralization of TS with HCl did not lead to optimal results, with increased phenol and decreased syngas production, whereas pretreatment with NaOH for hydrolysis was found to significantly increase methane production and decrease the amount of aromatics formed, suggesting that this method should lead to superior results and a simpler reaction mechanism.


Tobacco stem Chemical pretreatment Thermal conversion TG-MS Gaseous product distributions Kinetics of pyrolysis 



This work was supported by the National Key Technology Support Program of China (2015BAL04B02), the National Natural Science Foundation of China (No. 21376274), the Collaborative Innovation Center of Building Energy Conservation and Environmental Control, and the Graduate Self-Exploration and Innovation Program of Central South University (2017zzts168).

Supplementary material

10973_2019_8010_MOESM1_ESM.doc (3.3 mb)
Supplementary material 1 (DOC 3362 kb)


  1. 1.
    Dan X, Yuankai S, Chen W. Tobacco in China. Lancet. 2014;383:2045–6.CrossRefGoogle Scholar
  2. 2.
    Mumba P, Phiri R. Environmental impact assessment of tobacco waste disposal. Int J Environ Res. 2008;2:225–30.Google Scholar
  3. 3.
    de Lucas A, Cañizares P, García MA, Gómez J, Rodríguez JF. Recovery of nicotine from aqueous extracts of tobacco wastes by an H + -form strong-acid ion exchanger. Ind Eng Chem Res. 1998;37:4783–91.CrossRefGoogle Scholar
  4. 4.
    Li Z, Huang D, Tang Z, Deng C, Zhang X. Fast determination of chlorogenic acid in tobacco residues using microwave-assisted extraction and capillary zone electrophoresis technique. Talanta. 2010;82:1181–5.CrossRefGoogle Scholar
  5. 5.
    Ding M, Wei B, Zhang Z, She S, Huang L, Ge S, Sheng L. Effect of potassium organic and inorganic salts on thermal decomposition of reconstituted tobacco sheet. J Therm Anal Calorim. 2017;129:975–84.CrossRefGoogle Scholar
  6. 6.
    Gao W, Chen K. Physical properties and thermal behavior of reconstituted tobacco sheet with precipitated calcium carbonate added in the coating process. Cellulose. 2017;24:2581–90.CrossRefGoogle Scholar
  7. 7.
    Prabowo H, Martono E, Witjaksono W. Activity of liquid smoke of tobacco stem waste as an ibsecticide on Spodoptera litura Fabricius larvae. Indones J Plant Protect. 2017;20:22–7.Google Scholar
  8. 8.
    Qi B, Aldrich C. Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour Technol. 2008;99:5595–601.CrossRefGoogle Scholar
  9. 9.
    Ma XC, Li LQ, Chen RF, Wang CH, Zhou K, Li HL. Porous carbon materials based on biomass for acetone adsorption: effect of surface chemistry and porous structure. Appl Surf Sci. 2018;459:657–64.CrossRefGoogle Scholar
  10. 10.
    Zhao GH, Feng YJ, Yu YL, Li ZM. Evaluation of stability and maturity during tobacco industrial solid waste composting. Adv Mater Res. 2014;1010–1012:956–60.CrossRefGoogle Scholar
  11. 11.
    Saithep N, Dheeranupatana S, Sumrit P, Jeerat S, Boonchalearmkit S, Wongsanoon J, Jatisatienr C. Composting of tobacco plant waste by manual turning and forced aeration system. Maejo Int J Sci Technol. 2009;3:248–60.Google Scholar
  12. 12.
    Meher K, Panchwagh A, Rangrass S, Gollakota K. Biomethanation of tobacco waste. Environ Pollut. 1995;90:199–202.CrossRefGoogle Scholar
  13. 13.
    Polat S, Apaydin-Varol E, Pütün AE. Thermal decomposition behavior of tobacco stem Part I: TGA–FTIR–MS analysis. Energy Source Part A. 2016;38:3065–72.CrossRefGoogle Scholar
  14. 14.
    Polat S, Apaydin-Varol E, Pütün AE. Thermal decomposition behavior of tobacco stem Part II: kinetic analysis. Energy Source Part A. 2016;38:3073–80.CrossRefGoogle Scholar
  15. 15.
    Czernik S, Bridgwater A. Overview of applications of biomass fast pyrolysis oil. Energy Fuel. 2004;18:590–8.CrossRefGoogle Scholar
  16. 16.
    Zhang Q, Chang J, Wang TJ, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag. 2007;48:87–92.CrossRefGoogle Scholar
  17. 17.
    Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen. 2011;407:1–19.CrossRefGoogle Scholar
  18. 18.
    Hossain AK, Davies PA. Pyrolysis liquids and gases as alternative fuels in internal combustion engines: a review. Renew Sustain Energy Rev. 2013;21:165–89.CrossRefGoogle Scholar
  19. 19.
    Sohi SP, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Adv Agron. 2010;105:47–82.CrossRefGoogle Scholar
  20. 20.
    Samira B, Nurhidayatullaili MuhdJ. Biomass-derived activated carbon: synthesis, functionalized, and photocatalysis application. In: Tawfik AS, editor. Advanced nanomaterials for water engineering, treatment, and hydraulics. Hershey: IGI Global; 2017. p. 162–99.Google Scholar
  21. 21.
    Basu P. Biomass gasification and pyrolysis: practical design and theory. Cambridge: Academic Press; 2010.Google Scholar
  22. 22.
    Wang K, Kim KH, Brown RC. Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 2014;16:727–35.CrossRefGoogle Scholar
  23. 23.
    Carvalheiro F, Duarte LC, Gírio FM. Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res India. 2008;67:849–64.Google Scholar
  24. 24.
    Long J, Song H, Jun X, Sheng S, Lun-shi S, Kai X, Yao Y. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process. Bioresour Technol. 2012;116:278–84.CrossRefGoogle Scholar
  25. 25.
    Nkemka VN, Li Y, Hao X. Effect of thermal and alkaline pretreatment of giant Miscanthus and Chinese fountaingrass on biogas production. Water Sci Technol. 2015;75:849–56.Google Scholar
  26. 26.
    Wang S, Ru B, Lin H, Dai G, Wang Y, Luo Z. Kinetic study on pyrolysis of biomass components: a critical review. Curr Org Chem. 2016;20:2489–513.Google Scholar
  27. 27.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  28. 28.
    Cai J, Wu W, Liu R, Huber GW. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 2013;15:1331–40.CrossRefGoogle Scholar
  29. 29.
    Bruzs B. Velocity of thermal decomposition of carbonates. J Phys Chem. 1926;30(5):680–93.CrossRefGoogle Scholar
  30. 30.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Pol Symp. 1964;6:183–95.CrossRefGoogle Scholar
  31. 31.
    Sung YJ, Seo YB. Thermogravimetric study on stem biomass of Nicotiana tabacum. Thermochim Acta. 2009;486:1–4.CrossRefGoogle Scholar
  32. 32.
    Strezov V, Popovic E, Filkoski RV, Shah P, Evans T. Assessment of the thermal processing behavior of tobacco waste. Energy Fuel. 2012;26:5930–5.CrossRefGoogle Scholar
  33. 33.
    Long J, Song H, Sun LS, Sheng S, Kai X, He LM, Xiang J. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour Technol. 2013;146:254–60.CrossRefGoogle Scholar
  34. 34.
    Oh GH, Yun CH, Park CR. Role of KOH in the one-stage KOH activation of cellulosic biomass. Bioorg Med Chem Lett. 2003;24:4999–5007.Google Scholar
  35. 35.
    Domínguez A, Menéndez J, Inguanzo M, Pis J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour Technol. 2006;97:1185–93.CrossRefGoogle Scholar
  36. 36.
    Köseoğlu E, Akmil-Başar C. Preparation structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol. 2015;26:811–8.CrossRefGoogle Scholar
  37. 37.
    Zhao D, Dai Y, Feng G, Yang J, Song J, She X. Chemical composition and fiber morphology of tobacco stem, scrap and dust. Tob Sci Technol. 2016;49:36–44.Google Scholar
  38. 38.
    Oja V, Hajaligol MR, Waymack BE. The vaporization of semi-volatile compounds during tobacco pyrolysis. J Anal Appl Pyrol. 2006;76:117–23.CrossRefGoogle Scholar
  39. 39.
    Kastanaki E, Vamvuka D, Grammelis P, Kakaras E. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Process Technol. 2002;77–78:159–66.CrossRefGoogle Scholar
  40. 40.
    Nowakowski DJ, Jones JM, Brydson RMD, Ross AB. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel. 2007;86:2389–402.CrossRefGoogle Scholar
  41. 41.
    Le Brech Y, Ghislain T, Leclerc S, Bouroukba M, Delmotte L, Brosse N, Snape C, Chaimbault P, Dufour A. Effect of potassium on the mechanisms of biomass pyrolysis studied using complementary analytical techniques. Chemsuschem. 2016;9:863–72.CrossRefGoogle Scholar
  42. 42.
    Shimada N, Kawamoto H, Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J Anal Appl Pyrol. 2008;81:80–7.CrossRefGoogle Scholar
  43. 43.
    Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.CrossRefGoogle Scholar
  44. 44.
    Wang S, Ru B, Dai G, Sun W, Qiu K, Zhou J. Pyrolysis mechanism study of minimally damaged hemicellulose polymers isolated from agricultural waste straw samples. Bioresour Technol. 2015;190:211–8.CrossRefGoogle Scholar
  45. 45.
    Wang S, Ru B, Lin H, Sun W, Luo Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol. 2015;182:120–7.CrossRefGoogle Scholar
  46. 46.
    Wu M, Xue J, Li Q, Tai D, Li T. Estimation of non-cyclic α-aryl ether units in wood and gramineous lignins. J Cell Sci Technol. 1995;3:32–9.Google Scholar
  47. 47.
    Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–63.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Energy Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Energy, Environment, Biological and Medical EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations