Advertisement

Convective heat transfer in a rotating nanofluid cavity with sinusoidal temperature boundary condition

  • S. A. Mikhailenko
  • M. A. Sheremet
  • I. Pop
Article
  • 28 Downloads

Abstract

Convective heat transfer of alumina–water nanoliquid within a rotating square cavity with left border sinusoidal temperature is studied numerically. The considered region is a rotating square enclosure having constant temperature boundary condition at \( \bar{x} = L \), while temperature of the border \( \bar{x} = 0 \) is changed as a sinusoidal function of coordinate, other walls are adiabatic. Dimensionless control equations formulated using stream function, vorticity and temperature, have been solved by the finite difference method of the second-order accuracy. The effects of Rayleigh number, Taylor number and nanoparticles volume fraction on fluid flow and heat transfer have been analyzed. It has been found that for low values of Ra a growth of nanoparticles concentration leads to the thermal transmission enhancement, while high values of Ta characterize also the intensification of thermal transmission with the nanoparticles concentration. At the same time, convective nanoliquid flow rate decreases with growth of Ta.

Keywords

Natural convection Nanofluid Rotating cavity Sinusoidal side wall temperature Numerical simulation 

Notes

Acknowledgements

The work of M.A. Sheremet was conducted as a government task of the Ministry of Education and Science of the Russian Federation (Project Number 13.6542.2017/6.7). The work of I. Pop has been supported from the grant PN-III-P4-ID-PCE-2016-0036, UEFISCDI, Romania.

References

  1. 1.
    Childs PRN. Rotating flow. Oxford: Elsevier; 2011.Google Scholar
  2. 2.
    Eckert ERG, Diaguila AJ, Curren AN. Experiments on mixed-free- and forced-convective heat transfer connected with turbulent flow through a short tube. NACA Technical Note 2974. 1953.Google Scholar
  3. 3.
    Metais B, Eckert ERG. Forced, mixed, and free convection regimes. J Heat Transf. 1964;64:295–6.CrossRefGoogle Scholar
  4. 4.
    Brundrett E, Burroughs PR. The temperature inner-law and heat transfer for turbulent air flow in a vertical square duct. Int J Heat Mass Transf. 1967;10:1133–42.CrossRefGoogle Scholar
  5. 5.
    Wagner RE, Velkoff HR. Measurements of secondary flows in a rotating duct. J Eng For Power, ASME paper 72-GT-17. 1972.Google Scholar
  6. 6.
    Wagner JH, Johnson BV, Hajek TJ. Heat transfer in rotating passages with smooth walls and radial outward flow. In: Presented at the gas turbine and aeroengine congress and exposition-June 4–8. Toronto, Ontario, Canada; 1989.Google Scholar
  7. 7.
    Guidez J. Study of the convective heat transfer in rotating coolant channel. ASME paper 88-GT-33 presented in Amsterdam, The Netherlands, June, 1988.Google Scholar
  8. 8.
    Morris WD, Ayhan T. Observations on the influence of rotation on heat transfer in the coolant channels of gas turbine rotor blades. Proc Inst Mech Eng. 1979;193:303–11.CrossRefGoogle Scholar
  9. 9.
    Morris W. Heat transfer and fluid flow in rotating coolant channels. Boston: Research Studies Press; 1981.Google Scholar
  10. 10.
    Taslim M, Bakhtari K, Liu H. Experimental and numerical investigation of impingement on a rib-roughened leading-edge wall. ASME paper No. GT2003-38118, 2003.Google Scholar
  11. 11.
    Taslim M, Bethka D. Experimental and numerical impingement heat transfer in an airfoil leading-edge cooling channel with cross-flow. ASME J Turbomach. 2009;131:011021.CrossRefGoogle Scholar
  12. 12.
    Greenspan HP. The theory of rotating fluids. Cambridge: Cambridge University Press; 1969.Google Scholar
  13. 13.
    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, FED 231/MD 66 (19550), 1995. pp 99–105.Google Scholar
  14. 14.
    Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.CrossRefGoogle Scholar
  15. 15.
    Tiwari RK, Das MK. Heat Transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50:2002–18.CrossRefGoogle Scholar
  16. 16.
    Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.CrossRefGoogle Scholar
  17. 17.
    Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51.CrossRefGoogle Scholar
  18. 18.
    Ghasemi E, Soleimani S, Bayat M. Control volume based finite element method study of nano-fluid natural convection heat transfer in an enclosure between a circular and a sinusoidal cylinder. Int J Nonlinear Sci Numer Simul. 2013;14:521–32.CrossRefGoogle Scholar
  19. 19.
    Mehryan SAM, Kashkooli FM, Soltani M, Raahemifar K. Fluid flow and heat transfer analysis of a nanofluid containing motile gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform magnetic field: numerical approach. PLoS ONE. 2016;11:e0157598.CrossRefGoogle Scholar
  20. 20.
    Qayyum S, Khan R, Habib H. Simultaneous effects of melting heat transfer and inclined magnetic field flow of tangent hyperbolic fluid over a nonlinear stretching surface with homogeneous–heterogeneous reactions. Int J Mech Sci. 2017;133:1–10.CrossRefGoogle Scholar
  21. 21.
    Ghalambaz M, Sheremet MA, Mehryan SAM, Kashkooli FM, Pop I. Local thermal non- equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7472-8.CrossRefGoogle Scholar
  22. 22.
    Sheremet MA, Pop I. Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms. Transp Porous Media. 2014;103:191–205.CrossRefGoogle Scholar
  23. 23.
    Sheremet MA, Groşan T, Pop I. Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model. ASME J Heat Transf. 2014;136:082501.CrossRefGoogle Scholar
  24. 24.
    Sheremet MA, Pop I, Mahian O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.CrossRefGoogle Scholar
  25. 25.
    Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.CrossRefGoogle Scholar
  26. 26.
    Bashirnezhad K, Rashidi MM, Yang Z, Yan WM. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122:863–84.CrossRefGoogle Scholar
  27. 27.
    Das SK, Choi SUS, Yu W, Pradeep Y. Nanofluids: science and technology. New Jersey: Wiley; 2008.Google Scholar
  28. 28.
    Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. New York: CRC Press, Taylor & Francis Group; 2016.CrossRefGoogle Scholar
  29. 29.
    Manca O, Jaluria Y, Poulikakos D. Heat transfer in nanofluids. Adv Mech Eng. 2010;2010:380826.CrossRefGoogle Scholar
  30. 30.
    Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv Powder Technol. 2017;28:244–55.CrossRefGoogle Scholar
  31. 31.
    Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.CrossRefGoogle Scholar
  32. 32.
    Sheikholeslami M, Ganji DD. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng. 2016;65:43–77.CrossRefGoogle Scholar
  33. 33.
    Jusoh R, Nazar R, Pop I. Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: a revised model. Phys Fluids. 2018;30:033604.CrossRefGoogle Scholar
  34. 34.
    Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.CrossRefGoogle Scholar
  35. 35.
    Nield DA, Bejan A. Convection in porous media. 4th ed. New York: Springer; 2013.CrossRefGoogle Scholar
  36. 36.
    Minkowycz WJ, Sparrow EM, Abraham JP, editors. Nanoparticle heat transfer and fluid flow. New York: CRC Press, Taylor & Fracis Group; 2013.Google Scholar
  37. 37.
    Buongiorno J, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:1–14.CrossRefGoogle Scholar
  38. 38.
    Fan J, Wang L. Review of heat conduction in nanofluids. ASME J Heat Transf. 2011;133:1–14.Google Scholar
  39. 39.
    Myers TG, Ribera H, Cregan V. Does mathematics contribute to the nanofluid debate? Int J Heat Mass Transf. 2017;111:279–88.CrossRefGoogle Scholar
  40. 40.
    Haddad Z, Oztop HF, Abu-Nada E, Mataoui A. A review on natural convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2012;16:5363–8.CrossRefGoogle Scholar
  41. 41.
    Bondareva NS, Buonomo B, Manca O, Sheremet MA. Heat transfer inside cooling system based on phase change material with alumina nanoparticles. Appl Therm Eng. 2018;144:972–81.CrossRefGoogle Scholar
  42. 42.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwisesc S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.004.CrossRefGoogle Scholar
  43. 43.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwisesc S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.003.CrossRefGoogle Scholar
  44. 44.
    Ho CJ, Li WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49:1345–53.CrossRefGoogle Scholar
  45. 45.
    Sheremet MA, Pop I. Natural convection in a square porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. Transp Porous Media. 2014;105:411–29.CrossRefGoogle Scholar
  46. 46.
    Sheremet MA, Pop I. Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. J Heat Transf. 2015;137:072601.CrossRefGoogle Scholar
  47. 47.
    Mikhailenko SA, Sheremet MA. Convective heat transfer combined with surface radiation in a rotating square cavity with a local heater. Numer Heat Transf A. 2017;72:697–707.CrossRefGoogle Scholar
  48. 48.
    Mikhailenko SA, Sheremet MA, Mohamad AA. Convective-radiative heat transfer in a rotating square cavity with a local heat-generating source. Int J Mech Sci. 2018;142–143:530–40.CrossRefGoogle Scholar
  49. 49.
    Sheremet MA, Pop I. Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2014;79:137–45.CrossRefGoogle Scholar
  50. 50.
    Sheremet MA, Grosan T, Pop I. Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Transp Porous Media. 2015;106:595–610.CrossRefGoogle Scholar
  51. 51.
    Saghir MZ, Ahadi A, Mohamad A, Srinivasan S. Water aluminum oxide nanofluid benchmark model. Int J Therm Sci. 2016;109:148–58.CrossRefGoogle Scholar
  52. 52.
    Hamady FJ, Lloyd JR, Yang KT, Yang HQ. A study of natural convection in a rotating enclosure. J Heat Transf. 1994;116:136–43.CrossRefGoogle Scholar
  53. 53.
    Tso CP, Jin LF, Tou KW. Numerical segregation of the effects of body forces in a rotating, differentially heated enclosure. Numer Heat Transf A. 2007;51:85–107.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratory on Convective Heat and Mass TransferTomsk State UniversityTomskRussia
  2. 2.Department of MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations