Advertisement

Characterization of Saqez as a natural chewing gum

Ash content, textural and thermal properties
  • Nima Mohammadi
  • Mohammad Reza EhsaniEmail author
  • Hossein Bakhoda
Article
  • 21 Downloads

Abstract

In this study, oleo-gum resin obtained from wild pistachio trees (Pistacia atlantica Desf. Subsp. kurdica), known as Saqez, was used as a biodegradable, biocompatible, natural, and edible chewing gum. Saqez was characterized by ash content, texture profile analysis, and differential scanning calorimetry (DSC). Furthermore, Saqez was also compared to commercial chewing gum samples. The total ash content was found highest in chewing gums followed by Saqez. Moreover, all texture parameter values of Saqez were lower than conventional chewing gums. The analysis of DSC in Saqez confirmed that the glass transition temperature was comparable to commercial chewing gums. Saqez gum was seen to be an ideal replacement for a synthetic gum base in the manufacturing of a commercial chewing gum. The present study offers new information on Saqez gum, which will be precious and useful for explaining its unique textural properties and thermal behavior in the area of food science and technology.

Keywords

Natural gum TPA DSC Chewing gum Ash content 

Notes

Acknowledgements

The authors wish to acknowledge Nikoo Ostovar and Mehdi Zojaji for the technical help.

References

  1. 1.
    Mothé CG, de Freitas JS. Lifetime prediction and kinetic parameters of thermal decomposition of cashew gum by thermal analysis. J Therm Anal Calorim. 2018;131:397–404.CrossRefGoogle Scholar
  2. 2.
    Verbeken D, Dierckx S, Dewettinck K. Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 2003;63:10–21.CrossRefGoogle Scholar
  3. 3.
    Patra N, Vojtová L, Martinová L. Deacetylation-induced changes in thermal properties of Sterculia urens gum. J Therm Anal Calorim. 2015;122:235–40.CrossRefGoogle Scholar
  4. 4.
    Galla NR, Dubasi GR. Chemical and functional characterization of Gum karaya (Sterculia urens L.) seed meal. Food Hydrocoll. 2010;24:479–85.  https://doi.org/10.1016/j.foodhyd.2009.12.003.CrossRefGoogle Scholar
  5. 5.
    Patra N, Martinová L, Stuchlik M, Černík M. Structure-property relationships in Sterculia urens/polyvinyl alcohol electrospun composite nanofibres. Carbohydr Polym. 2015;120:69–73.CrossRefGoogle Scholar
  6. 6.
    Vinod VTP, Sashidhar RB, Suresh KI, Rama Rao B, Vijaya Saradhi UVR, Prabhakar Rao T. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll 2008;22:899–915. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0268005X07001294.
  7. 7.
    Mahdavi A. The economic, social, and ecological impacts of wild pistachio (Pistacia atlantica Desf.) oleo-gum resin extraction cooperatives in Zagros forests, Ilam province, Iran. For Trees Livelihoods. 2015;24:275–84.  https://doi.org/10.1080/14728028.2015.1090934.CrossRefGoogle Scholar
  8. 8.
    Mikaili P, Shayegh J, Sarahroodi S, Sharifi M. Pharmacological properties of herbal oil extracts used in Iranian traditional medicine. Adv Environ Biol. 2012;6:153–8.Google Scholar
  9. 9.
    Rezaie M, Farhoosh R, Iranshahi M, Sharif A, Golmohamadzadeh S. Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chem. 2015;173:577–83.  https://doi.org/10.1016/j.foodchem.2014.10.081.CrossRefPubMedGoogle Scholar
  10. 10.
    Rahbar Saadat Y, Barzegari A, Zununi Vahed S, Saeedi N, Eskandani M, Omidi Y, et al. Cyto/genotoxic effects of Pistacia atlantica resin, a traditional gum. DNA Cell Biol. 2016;35:261–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27196631.
  11. 11.
    Moradi S, Limaei SM, Lohmander P, Khanmohammadi M. Quantitative and financial evaluation of non-timber forest products (case study: Zemkan basin forests, West of Iran). J For Res. 2017;28:371–9.  https://doi.org/10.1007/s11676-016-0313-3.CrossRefGoogle Scholar
  12. 12.
    Savedoroudi P, Mirzajani F, Aliahmadi A, Ghassempour A. Top-down thermal analysis versus bottom-up gas chromatography-mass spectrometry in an adulteration study of Pistacia atlantica Desf. oleoresin. J Therm Anal Calorim. 2016;123:2451–7.CrossRefGoogle Scholar
  13. 13.
    Mahdavi A. The economic, social, and ecological impacts of wild pistachio (Pistacia atlantica Desf.) oleo-gum resin extraction cooperatives in Zagros forests, Ilam Province, Iran. For Trees Livelihoods. 2015;24:275–84.  https://doi.org/10.1080/14728028.2015.1090934.CrossRefGoogle Scholar
  14. 14.
    Mousavi R. Non-wood forest products, the utilization, and harvesting methods in Sardasht, North West Iran. Int J For Soil Eros. 2012;2:133–6.Google Scholar
  15. 15.
    Sharifi MS, Hazell SL. GC-MS analysis and antimicrobial activity of the essential oil of the trunk exudates from Pistacia atlantica kurdica. J Pharm Sci Res. 2011;3:1364–7.Google Scholar
  16. 16.
    Kamrani Y, Amanlou M, Esmaeelian B, Rahimi M. In vitro antibacterial and antiadherence properties of flavonoid-rich extract of Pistacia atlantica hull against microorganisms involved in dental plaque. Planta Med. 2007;73:P_198.  https://doi.org/10.1055/s-2007-986979.CrossRefGoogle Scholar
  17. 17.
    Abbasi S. Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Curr Opin Colloid Interface Sci. 2017;28:37–45.CrossRefGoogle Scholar
  18. 18.
    Dabestani M, Kadkhodaee R, Phillips GO, Abbasi S. Persian gum: a comprehensive review on its physicochemical and functional properties. Food Hydrocoll. 2017;78:92–9.CrossRefGoogle Scholar
  19. 19.
    Welti-Chanes J, Vergara-Balderas F, Perez E, Bermudex D, Valdex-Fragose A, Mujica-Paz H. Phase transitions and hygroscopicity in chewing gum manufacture. In: Gutiérrez-López GF, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E, editors. Food engineering: integrated approaches. New York, NY: Springer; 2008.Google Scholar
  20. 20.
    Santos MG, Carpinteiro DA, Thomazini M, Rocha-Selmi GA, da Cruz AG, Rodrigues CEC, et al. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res Int. 2014;66:454–62.  https://doi.org/10.1016/j.foodres.2014.10.010.CrossRefGoogle Scholar
  21. 21.
    Mohammadi N, Ehsani MR, Bakhoda H. Design and evaluation of the release characteristics of caffeine-loaded microcapsules in a medicated chewing gum formulation. Food Biophys. 2018;13:240–9.  https://doi.org/10.1007/s11483-018-9530-y.CrossRefGoogle Scholar
  22. 22.
    Palabiyik I, Toker OS, Konar N, Öner B, Demirci AS. Development of a natural chewing gum from plant based polymer. J Polym Environ. 2018;26:1969–78.  https://doi.org/10.1007/s10924-017-1094-2.CrossRefGoogle Scholar
  23. 23.
    Shete RB, Muniswamy VJ, Pandit AP, Khandelwal KR. Formulation of eco-friendly medicated chewing gum to prevent motion sickness. AAPS PharmSciTech. 2015;16:1041–50.  https://doi.org/10.1208/s12249-015-0296-y.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Welti-Chanes J, Vergara-Balderas F, Perez E, Bermudex D, Valdex-Fragose A, Mujica-Paz H. Phase transitions and hygroscopicity in chewing gum manufacture. In: Gutiérrez-López GF, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E, editors. Food Engineering: Integrated Approaches. New York, NY: Springer; 2008. p. 139–53.CrossRefGoogle Scholar
  25. 25.
    Santos MG, Carpinteiro DA, Thomazini M, Rocha-Selmi GA, da Cruz AG, Rodrigues CEC, et al. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res Int. 2014;66:454–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0963996914006565.
  26. 26.
    AOAC: Official Methods of Analysis of AOAC International. 1990. p. 1058–9.Google Scholar
  27. 27.
    Breene WM. Application of texture profile analysis to instrumental food texture evaluation. J Texture Stud. 1975;6:53–82.  https://doi.org/10.1111/j.1745-4603.1975.tb01118.x.CrossRefGoogle Scholar
  28. 28.
    Mohammadi N, Ehsani MR, Bakhoda H. Development of caffeine-encapsulated alginate-based matrix combined with different natural biopolymers, and evaluation of release in simulated mouth conditions. Flavour Fragr J. 2018;33:14–6.  https://doi.org/10.1002/ffj.3452.CrossRefGoogle Scholar
  29. 29.
    Razavi SMA, Cui SW, Guo Q, Ding H. Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocoll. 2014;35:453–62.CrossRefGoogle Scholar
  30. 30.
    Cui W, Mazza G. Physicochemical characteristics of flaxseed gum. Food Res Int. 1996;29:397–402.CrossRefGoogle Scholar
  31. 31.
    Amin AM, Ahmad AS, Yin YY, Yahya N, Ibrahim N. Extraction, purification and characterization of durian (Durio zibethinus) seed gum. Food Hydrocoll. 2007;21:273–9.CrossRefGoogle Scholar
  32. 32.
    Dakia PA, Blecker C, Robert C, Wathelet B, Paquot M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll. 2008;22:807–18.CrossRefGoogle Scholar
  33. 33.
    Palabiyik I, Toker OS, Konar N, Öner B, Demirci AS (2017) Development of a natural chewing gum from plant based polymer. J Polym Environ.  https://doi.org/10.1007/s10924-017-1094-2.
  34. 34.
    Konar N, Palabiyik I, Toker OS, Sagdic O. Chewing gum: production, quality parameters and opportunities for delivering bioactive compounds. Trends Food Sci Technol. 2016;55:29–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0924224416301443.
  35. 35.
    Garg T, K. Goyal A. Medicated chewing gum: patient compliance oral drug delivery system. Drug Deliv Lett. 2014;4:72–8. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=2210-3031&volume=4&issue=1&spage=72.
  36. 36.
    McGowan BA, Lee S-Y. Comparison of methods to analyze time–intensity curves in a corn zein chewing gum study. Food Qual Prefer. 2006;17:296–306. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0950329305001102.
  37. 37.
    Mehta FF, Rajagopalan R, Trivedi P. Formulation and characterization of caffeine biodegradable chewing gum delivery system for alertness using plasticized poly(D, L-lactic acid) as gum base. Trop J Pharm Res. 2017;16:1489–96.CrossRefGoogle Scholar
  38. 38.
    Mehta FF, Trivedi P. Formulation and characterization of biodegradable medicated chewing gum delivery system for motion sickness using corn zein as gum former. Trop J Pharm Res. 2015;14:753–60. Available from: http://www.tjpr.org.
  39. 39.
    Mehta F, Trivedi P. Formulation and texture characterization of zein chewing gum. Sch Res Libr Arch Appl Sci Res. 2012;4:781–91.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Agricultural Mechanization, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations