Advertisement

Electrospun composite mats of alginate with embedded silver nanoparticles

Synthesis and characterization
  • Maila Castellano
  • Marina AlloisioEmail author
  • Rimah Darawish
  • Andrea Dodero
  • Silvia Vicini
Article
  • 59 Downloads

Abstract

In this work, a nanocomposite material based on alginate (Alg) and silver nanoparticles (AgNPs) was prepared by the synthesis “in situ” of the metal cores in the polymer solution through a wet, bottom-up approach. The formation of AgNPs within the alginate matrix (Alg–Ag) was confirmed by spectroscopic and morphological investigation. The nanocomposite material was then employed in combination with poly(ethylene oxide) for the production of crosslinked alginate membranes by electrospinning technique, following a simple and effective protocol optimized to obtain nano- to microscaled fibers. Field emission scanning electron microscopy (FESEM) studies on the composite membranes indicated that AgNPs of slightly increased dimensions are well distributed in the electrospun mats, thus proving that the electrospinning process does not significantly alter the morphology of the metal nanofillers and can be successfully adopted for the fabrication of nanofibers. In view of their potential applications in biomedical fields and food industry as antibacterial material, the nanocomposite mats were tested against thermal and UV sterilization, anti-mold treatment (NaClO) and environmental changes (pH) and their stability was monitored by means of thermogravimetric (TGA) and morphological (FESEM) techniques.

Keywords

Sodium alginate Silver nanoparticles Nanocomposite mats Electrospinning Thermogravimetric analysis 

Notes

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

Supplementary material

10973_2018_7979_MOESM1_ESM.docx (709 kb)
Supplementary material 1 (DOCX 708 kb)

References

  1. 1.
    Zafar R, Mahmood K, Tabasum S, Jabeen F, Noreen A, Zuber M. Polysaccharide based bionanocomposites, properties and applications: a review. Int J Biol Macromol. 2016;92:1012–24.CrossRefGoogle Scholar
  2. 2.
    Zheng Y, Monty J, Linhart RJ. Polysaccharide-based nanocomposites and their applications. Carbohyd Res. 2015;405:23–32.CrossRefGoogle Scholar
  3. 3.
    Cazón P, Velazquez G, Ramírez JA, Vázquez M. Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids. 2017;68:136–48.CrossRefGoogle Scholar
  4. 4.
    Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;36:106–26.CrossRefGoogle Scholar
  5. 5.
    Stewart MB, Gray SR, Vasiljevic T, Orbell JD. Exploring the molecular basis for the metal-mediated assembly of alginate gels. Carbohyd Polym. 2014;102:246–53.CrossRefGoogle Scholar
  6. 6.
    Donati I, Holtan S, Morch YA, Borgogna M, Dentini M, Skjak-Braek G. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromol. 2005;6:1031–40.CrossRefGoogle Scholar
  7. 7.
    Stewart MB, Gray SR, Vasiljevic T, Orbell JD. The role of poly-M and poly-GM sequences in the metal-mediated assembly of alginate gels. Carbohyd Polym. 2014;112:486–93.CrossRefGoogle Scholar
  8. 8.
    Sikorski P, Mo F, Skjak-Braek G, Stokke BT. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromol. 2007;8:2098–103.CrossRefGoogle Scholar
  9. 9.
    Vicini S, Castellano M, Mauri M, Marsano E. Gelling process for sodium alginate: new technical approach by using calcium rich micro-spheres. Carbohyd Polym. 2015;134:767–74.CrossRefGoogle Scholar
  10. 10.
    Vicini S, Mauri M, Wichert J, Castellano M. Alginate gelling process: use of bivalent ions rich. Polym Eng Sci. 2017;57:531–6.CrossRefGoogle Scholar
  11. 11.
    Velema J, Kaplan D. Biopolymer-based biomaterials as scaffolds for tissue engineering. Adv Biochem Eng Biotechnol. 2006;102:187–238.PubMedGoogle Scholar
  12. 12.
    Rajkumar M, Meenakshisundaram N, Rajendran V. Development of nanocomposites based on hydroxyapatite/sodium alginate: synthesis and characterisation. Mater Charact. 2011;62:469–79.CrossRefGoogle Scholar
  13. 13.
    Kumar A, Rao KM, Han SS. Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym Test. 2017;63:214–25.CrossRefGoogle Scholar
  14. 14.
    Liu S, Bastola AK, Li L. A 3D printable and mechanically robust hydrogel based on alginate and graphene oxide. ACS Appl Mater Interface. 2017;9:41473–81.CrossRefGoogle Scholar
  15. 15.
    Malagurskia I, Levic S, Pantic M, Matijasevic D, Mitric M, Pavlovic V, Dimitrijevic-Brankovic S. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. Carbohyd Polym. 2017;165:313–21.CrossRefGoogle Scholar
  16. 16.
    Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromol. 2009;10:1429–35.CrossRefGoogle Scholar
  17. 17.
    Gabriel JS, Gonzaga VAM, Poli AL, Schmitt CC. Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity. Carbohyd Polym. 2017;171:201–10.CrossRefGoogle Scholar
  18. 18.
    Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat. 1995;35:151–60.CrossRefGoogle Scholar
  19. 19.
    Hayati I, Bailey A, Tadros TF. Investigations into the mechanism of electrohydrodynamic spraying of liquids: II. Mechanism of stable jet formation and electrical forces acting on a liquid cone. J Colloid Interface Sci. 1987;117:222–30.CrossRefGoogle Scholar
  20. 20.
    Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. II. Applications. Phys Fluids. 2001;13:2221–36.CrossRefGoogle Scholar
  21. 21.
    Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys. 2000;87:4531–47.CrossRefGoogle Scholar
  22. 22.
    Shin YM, Hohman MM, Brenner MP, Rutledge GC. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001;42:09955–67.CrossRefGoogle Scholar
  23. 23.
    Taylor G. Electrically driven jets. Proc R Soc A. 1969;313:453–75.CrossRefGoogle Scholar
  24. 24.
    Castellano M, Cantù R, Mauri M, Marsano E, Vicini S. Poly(dimethylsiloxane)/TiO2 photocatalytic membranes obtained by different electrospinning systems. J Nanosci Nanotechnol. 2016;16:6587–94.CrossRefGoogle Scholar
  25. 25.
    Huang L, Nagapudi K, Apkarian RP, Chaikof EL. Engineered collagen–PEO nanofibers and fabrics. J Biomater Sci Polym E. 2001;12:979–93.CrossRefGoogle Scholar
  26. 26.
    Duan B, Dong CH, Yuan XY, Yao KD. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym E. 2004;15:797–811.CrossRefGoogle Scholar
  27. 27.
    Bonino CA, Krebs MD, Saquing CD, Jeong SI, Shearer KL, Alsberg E, Khan SA. Electrospinning alginate-based nanofibers: from blends to crosslinked low molecular weight alginate-only systems. Carbohyd Polym. 2011;85:111–9.CrossRefGoogle Scholar
  28. 28.
    Lu JW, Zhu YL, Guo ZX, Hu P, Yu J. Electrospinning of sodium alginate with poly(ethylene oxide). Polymer. 2006;47:8026–31.CrossRefGoogle Scholar
  29. 29.
    Seo SY, Lee GH, Lee SG, Jung SY, Lim JO, Choi JH. Alginate-based composite sponge containing silver nanoparticles synthesized in situ. Carbohydr Polym. 2012;90:109–15.CrossRefGoogle Scholar
  30. 30.
    Zhao X, Li Q, Ma X, Quan F, Wanga J, Xia Y. The preparation of alginate–AgNPs composite fiber with green approach and its antibacterial activity. J Ind Eng Chem. 2012;24:188–95.CrossRefGoogle Scholar
  31. 31.
    Alloisio M, Zappia S, Demartini A, Martinez Espinoza MI, Ottonelli M, Dellepiane G, Thea S, Cavalleri O, Rolandi R. Silver-polydiacetylene core-shell nanohybrids: from nano to mesoscale architectures. Nano-Struct Nano-Objects. 2015;4:15–22.CrossRefGoogle Scholar
  32. 32.
    Drezner Z, Turel O. Normalizing variables with too-frequent values using a Kolmogorov–Smirnov test: a practical approach. Comput Ind Eng. 2011;61:1240–4.CrossRefGoogle Scholar
  33. 33.
    Pham-Gia T, Hung TL. The mean and median absolute deviations. Math Comput Model. 2001;34:921–36.CrossRefGoogle Scholar
  34. 34.
    Li J, He J, Huang Y, Li D, Chen X. Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation. Carbohyd Polym. 2015;123:208–16.CrossRefGoogle Scholar
  35. 35.
    Salama A, Diab MA, Abou-Zeid RE, Aliohani HA, Shoueir KR. Crosslinked alginate/silica/zinc oxide nanocomposite: a sustainable material with antibacterial properties. Compos Commun. 2018;7:7–11.CrossRefGoogle Scholar
  36. 36.
    Wu T, Huang J, Jiang Y, Hu Y, Te X, Liu D, Chen J. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem. 2018;240:361–9.CrossRefGoogle Scholar
  37. 37.
    Wang C, Luo W, Li P, Li S, Yang Z, Hu Z, Liu Y, Ao N. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohyd Polym. 2017;174:432–42.CrossRefGoogle Scholar
  38. 38.
    Choudharya S. Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J Phys Chem Solids. 2018;121:196–209.CrossRefGoogle Scholar
  39. 39.
    Kiran KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR. Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-Cryst Solids. 2012;358:3205–11.CrossRefGoogle Scholar
  40. 40.
    Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Uribe-Calderon Bouchard J, Kamal MR, Lacroix M. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohyd Polym. 2012;90:1757–63.CrossRefGoogle Scholar
  41. 41.
    Zille A, Fernandes MM, Francesko A, Tzanov T, Fernandes M, Oliveira FR, Almeida L, Amorim T, Carneiro N, Esteves MF, Souto AP. Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma. ACS Appl Mater Interfaces. 2015;7:13731–44.CrossRefGoogle Scholar
  42. 42.
    do Nascimento Porto Neto A, dos Santos Cruz CF, Russo Serafini M, dos Passos Menezes P, Barbosa Gomes de Carvalho YM, Santos Matos CR, Santos Nunes P, Cordeiro Cardoso J, Cavalcanti de Albuquerque Junior RL, Rolim Neto PJ, Amaral Silva F, de Souza Araújo A. Usnic acid-incorporated alginate and gelatin sponges prepared by freeze-drying for biomedical applications. Carbohyd Polym. 2017;127:1703–13.Google Scholar
  43. 43.
    Guerra Nista SV, Bettini J, Innocentini Meia LH. Coaxial nanofibers of chitosan–alginate–PEO polycomplex obtained by electrospinning. Carbohyd Polym. 2015;127:222–8.CrossRefGoogle Scholar
  44. 44.
    Cássia da Silva R, Gomes Cavalheiro ET. Synthesis, characterization, and thermal analysis of alginate and monoethanolamine product. J Therm Anal Calorim. 2015;120:855–62.CrossRefGoogle Scholar
  45. 45.
    Laurenzio P, Malinconico M, Motta A, Vicinanza A. Synthesis and characterization of a novel alginate–poly(ethylene glycol) graft copolymer. Carbohyd Polym. 2005;62:274–82.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Maila Castellano
    • 1
  • Marina Alloisio
    • 1
    Email author
  • Rimah Darawish
    • 1
  • Andrea Dodero
    • 1
  • Silvia Vicini
    • 1
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly

Personalised recommendations