Recycling of lubricating oils used in gasoline/alcohol engines

Thermal characterization
  • J. C. O. SantosEmail author
  • R. A. Almeida
  • M. W. N. C. Carvalho
  • A. E. A. Lima
  • A. G. Souza


Lubricating oils are complex mixtures of hydrocarbons obtained from petroleum by refining process and represent 2% of petroleum derivatives. The used lubricating oil is an important raw material for re-refining, because during its use it is not completely degraded, so it can be recovered from it, the base oil, which can be reused for the same purpose. Mineral-based lubricating oils were used for this work. It worked with two engines using the same type of oil; one of them was monitored during approximately 5000 km and the other one for 10,000 km. The base oil was then recovered from the lubricant using polar organic solvents (1-butanol, 2-propanol and methyl-ethyl-ketone) and then characterized by physicochemical analysis and thermal analysis (TG/DTG/DTA). From the solvents used in the extraction of the base oil, the best yields were methyl-ethyl-ketone, about 80% and 1-butanol, just above 70%. Already with 2-propanol, it was not satisfactory. The method used for the recovery of waste oils proved to be feasible and, the thermal analysis techniques evidenced the viability of this process.


Used lubricating oils Recovery Thermal analysis Polar solvents 



  1. 1.
    Silveira ELC, Caland LB, Moura CVR, Moura EM. Determinação de Contaminantes em Óleos Lubrificantes Usados e em Esgotos Contaminados por esses Lubrificantes. Quím Nova. 2006;29:1193–7.Google Scholar
  2. 2.
    Ruprecht VC. Lubrificação, Fricção e Adesão. 2012. Accessed 16 Jan 2017.
  3. 3.
    Santos JCO, Santos IMG, Souza AG. Thermal degradation process of synthetic lubricating oils: part I—spectroscopic study. Petrol Sci Technol. 2015;33:1238–45.Google Scholar
  4. 4.
    Santos JCO, Santos IMG, Souza AG. Thermal degradation of synthetic lubricating oils: part II—rheological study. Petrol Sci Technol. 2017;35:535–9.Google Scholar
  5. 5.
    Santos JCO, Santos IMG, Souza AG. Thermal degradation of synthetic lubricating oils: part III—TG and DSC studies. Petrol Sci Technol. 2017;35:540–6.Google Scholar
  6. 6.
    Park SW, Lee JY, Yang JS, Kim KJ, Baek K. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. J Hazard Mater. 2009;169:1168–72.PubMedGoogle Scholar
  7. 7.
    Lorenzetti DB, Rossato MV. A gestão de resíduos em postos de abastecimento de combustíveis. Rev Gestão Ind. 2010;6:110–25.Google Scholar
  8. 8.
    Lima AEA, Conceição MM, Santos JCO, Rosenhaim R, Santos IMG, Souza AG. Otimização do processo de recuperação de lubrificante usado por extração com solventes polares. Rev Quím Ind. 2016;84:57–66.Google Scholar
  9. 9.
    Kupareva A, Mäki-Arvela P, Grénman H, Eränen K, Sjöholm R, Reunanen M, Murzin DY. Chemical characterization of lube oils. Energy Fuels. 2013;27:27–34.Google Scholar
  10. 10.
    Al-Ghouti MA, Al-Atoum L. Virgin and recycled engine oil differentiation: a spectroscopic study. J Environ Manage. 2009;90:187–95.PubMedGoogle Scholar
  11. 11.
    Hamad A, Al-Zubaidy E, Fayed ME. Used lubricating oil recycling using hydrocarbon solvents. J Environ Manag. 2005;74:153–9.Google Scholar
  12. 12.
    Kanokkantapong V, Kiatkittipong W, Panyapinyopol B, Wongsuchoto P, Pavasant P. Used lubricating oil management options based on life cycle thinking. Resour Conserv Recycl. 2009;53:294–9.Google Scholar
  13. 13.
    Rincón J, Cañizares P, Gracía MT. Regeneration of used lubricant oil by polar solvent extraction. Ind Eng Chem Res. 2005;44:4373–9.Google Scholar
  14. 14.
    Lam SS, Russell AD, Chase HA. Microwave pyrolysis, a novel process for recycling waste automotive engine oil. Energy. 2010;35:2985–91.Google Scholar
  15. 15.
    Majano G, Mintova S. Mineral oil regeneration using selective molecular sieves as sorbents. Chemosphere. 2010;78:591–8.PubMedGoogle Scholar
  16. 16.
    Al-Zahrani SM, Putra MD. Used lubricating oil regeneration by various solvent extraction techniques. J Ind Eng Chem. 2013;19:536–41.Google Scholar
  17. 17.
    Silveira ELC, Coelho RC, Moita Neto JM, Moura CVR, Moura EM. Determination of metals in lubricating oils from public transportation using the FAAS. Quím Nova. 2010;33:1863–70.Google Scholar
  18. 18.
    Watcharasing S, Kongkowit W, Chavadej S. Motor oil removal from water by continuous froth flotation using extended surfactant: effects of air bubble parameters and surfactant concentration. Sep Purif Technol. 2009;70:179–89.Google Scholar
  19. 19.
    Guan L, Feng XL, Xiong G, Xie JA. Application of dielectric spectroscopy for engine lubricating oil degradation monitoring. Sens Actuators A Phys. 2011;168:22–9.Google Scholar
  20. 20.
    Rios MAS, Mazetto SE. Effect of organophosphate antioxidant on the thermo-oxidative degradation of a mineral oil. J Therm Anal Calorim. 2013;111:553–9.Google Scholar
  21. 21.
    Santos JCO, Souza AG, Oliveira AD, Lima LN, Silva CC, Silva JDS. Kinetic and activation thermodynamic parameters on thermal decomposition of synthetic lubricant oils. J Therm Anal Calorim. 2007;87:823–9.Google Scholar
  22. 22.
    Santos JCO, Souza AG, Santos IMG, Lima LN. Thermal, spectroscopic and rheological study of mineral base lubricating oils. J Therm Anal Calorim. 2007;87:639–43.Google Scholar
  23. 23.
    Lima LMR, Santos JCO, Souza AG. Thermoanalytical and Kinetic Study of Lubricating Lithium Greases. J Eng Appl Sci. 2007;2:718–21.Google Scholar
  24. 24.
    Santos JCO, Souza AG, Santos IMG, Sinfrônio FSM, Silva MA, Vitor Sobrinho E, Conceição MM, Fernandes Junior VJ. Thermodynamic and kinetic parameters on thermal degradation of automotive mineral lubricant oils determined using thermogravimetry. J Therm Anal Calorim. 2005;79:461–7.Google Scholar
  25. 25.
    Santos JCO, Souza AG, Santos IMG. Thermoanalytical and rheological characterization of automotive mineral lubricants after thermal degradation. Fuel. 2004;83:2393–9.Google Scholar
  26. 26.
    Santos JCO, Souza AG. Liquid specific heat capacity of motor lubricant oils after thermal degradation. J Eng Appl Sci. 2006;1:495–9.Google Scholar
  27. 27.
    Azad AK, Ameer Uddin SM, Alam MM. A comprehensive study of diesel engine performance with vegetable oil: an alternative bio-fuel source of energy. Int J Autom Mech Eng. 2012;5:576–86.Google Scholar
  28. 28.
    Santos JCO, Almeida RA, Lins MP, Carvalho MWNC, Conceição MM, Souza AG. Avaliação da estabilidade térmica e oxidativa de óleo lubrificante automotivo recuperado usando o solvente metil-etil-cetona. Quím Bras. 2014;08:49–56.Google Scholar
  29. 29.
    Yu X, Huang L. Prediction of the onset temperature of decomposition of lubricant additives. J Therm Anal Calorim. 2017;130:943–7.Google Scholar
  30. 30.
    Matos PRR, Andrade CKZ, Rodrigues JDO, Sales MJA, Almeida AS, Politi JRS. Thermostability and physicochemical properties of two macauba oils and their derivatives related to their use as a lubricant base. J Therm Anal Calorim. 2018;132:293–303.Google Scholar
  31. 31.
    Santos JCO. Recovery of used lubricating oils—a brief review. Progress Petrochem Sci. 2018;1:01–4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • J. C. O. Santos
    • 1
    Email author
  • R. A. Almeida
    • 2
  • M. W. N. C. Carvalho
    • 3
  • A. E. A. Lima
    • 4
  • A. G. Souza
    • 4
  1. 1.Unidade Acadêmica de Biologia e QuímicaFederal University of Campina Grande, UFCGCuitéBrazil
  2. 2.Departamento de Ciências AgráriasFederal University of Paraiba, UFPBBananeirasBrazil
  3. 3.Unidade Acadêmica de Engenharia QuímicaFederal University of Campina Grande, UFCGCampina GrandeBrazil
  4. 4.Departamento de QuímicaFederal University of Paraiba, UFPBJoão PessoaBrazil

Personalised recommendations