Advertisement

Recent progress on concentrating direct absorption solar collector using nanofluids

A review
  • Radzi Abdul Rasih
  • Nor Azwadi Che SidikEmail author
  • Syahrullail Samion
Article

Abstract

Recently, solar energy research popularity has been growing rapidly due to its pollutant-free renewable energy source. As an alternative energy to the existing conventional fossil resources, solar energy is projected to drive the future research to a new level in renewable energy field. One of the methods to harvest the solar energy is through the solar thermal collector, which utilizes heat transfer fluid to capture the solar radiation. In this paper, a recent development of application using concentrated direct absorption solar collector on nanofluids is comprehensively discussed. Our emphasis is on concentrating solar collector including parabolic trough, parabolic dish, heliostat field collector and Fresnel solar collector. To accomplish this, an inclusive review on the analytical, numerical and experimental studies in this field is prepared. Finally, some issues related to the concentrated direct absorption solar collector using nanofluid are also presented.

Keywords

Nanofluid Direct absorption solar collector Concentrated solar collector Thermal efficiency Solar energy 

References

  1. 1.
    World Energy Council. World energy resources: 2013 survey. London: World Energy Council; 2013.Google Scholar
  2. 2.
    Akhmat G, Zaman K, Shukui T, Sajjad F, Khan MA, Khan MZ. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries. Environ Sci Pollut Res. 2014;21(12):7425–35.CrossRefGoogle Scholar
  3. 3.
    Dugaria S, Bortolato M, Del Col D. Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation. Renew Energy. 2017;128:495–508.CrossRefGoogle Scholar
  4. 4.
    González-Roubaud E, Pérez-Osorio D, Prieto C. Review of commercial thermal energy storage in concentrated solar power plants: steam vs. molten salts. Renew Sustain Energy Rev. 2017;80(May):133–48.CrossRefGoogle Scholar
  5. 5.
    Sabiha MA, Saidur R, Mekhilef S, Mahian O. Progress and latest developments of evacuated tube solar collectors. Renew Sustain Energy Rev. 2015;51:1038–54.CrossRefGoogle Scholar
  6. 6.
    Pandey KM, Chaurasiya R. A review on analysis and development of solar flat plate collector. Renew Sustain Energy Rev. 2017;67:641–50.CrossRefGoogle Scholar
  7. 7.
    Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39(1):293–8.CrossRefGoogle Scholar
  8. 8.
    Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2–H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew Energy. 2018;118:122–30.CrossRefGoogle Scholar
  9. 9.
    Mahbubul IM, Khan MMA, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur R. Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew Energy. 2018;121:36–44.CrossRefGoogle Scholar
  10. 10.
    Ibrahim O, Fardoun F, Younes R, Ibrahim M. Improved model for calculating instantaneous efficiency of flat-plate solar thermal collector. J Heat Transfer. 2017;17(1067):1–23.Google Scholar
  11. 11.
    Minardi JE, Chuang HN. Performance of a ‘black’ liquid flat-plate solar collector. Sol Energy. 1975;17(3):179–83.CrossRefGoogle Scholar
  12. 12.
    Kasaeian A, Daneshazarian R, Pourfayaz F. Comparative study of different nanofluids applied in a trough collector with glass-glass absorber tube. J Mol Liq. 2017;234:315–23.CrossRefGoogle Scholar
  13. 13.
    Bhalla V, Tyagi H. Solar energy harvesting by cobalt oxide nanoparticles, a nanofluid absorption based system. Sustain Energy Technol Assess. 2017;24:45–54.Google Scholar
  14. 14.
    Subramani J, Nagarajan PK, Mahian O, Sathyamurthy R. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime. Renew Energy. 2018;119:19–31.CrossRefGoogle Scholar
  15. 15.
    Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: a review of the diverse applications of nanofluids. Appl Phys. 2013;113(1):011301.CrossRefGoogle Scholar
  16. 16.
    He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50:2272–81.CrossRefGoogle Scholar
  17. 17.
    Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17–18):4051–68.CrossRefGoogle Scholar
  18. 18.
    Sidik NAC, Adamu IM, Jamil MM, Kefayati GHR, Mamat R, Najafi G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass Transf. 2016;78:68–79.CrossRefGoogle Scholar
  19. 19.
    Che Sidik NA, Mahmud Jamil M, Aziz Japar WMA, Muhammad Adamu I. A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sustain Energy Rev. 2017;80:1112–22.CrossRefGoogle Scholar
  20. 20.
    Midhun Mohan V, Sajeeb AM. Improving the efficiency of DASC by adding CeO2/CuO hybrid nanoparticles in water. Int J Nanosci. 2017;17(0102):1760011.Google Scholar
  21. 21.
    Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford University Press; 1904. p. 435–41.Google Scholar
  22. 22.
    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.CrossRefGoogle Scholar
  23. 23.
    Hussein AK. Applications of nanotechnology in renewable energies - A comprehensive overview and understanding. Renew Sustain Energy Rev. 2015;42:460–76.CrossRefGoogle Scholar
  24. 24.
    Choi SUS, Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, San Francisco, CA, USA; vol. 231, pp. 99–105, 1995.Google Scholar
  25. 25.
    Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int J Heat Fluid Flow. 2007;28(2):211–9.CrossRefGoogle Scholar
  26. 26.
    Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl Therm Eng. 2008;28(7):717–27.CrossRefGoogle Scholar
  27. 27.
    Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.CrossRefGoogle Scholar
  28. 28.
    Wang W, Wu Z, Li B, Sunde B, A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J. Therm. Anal. Calorim., pp. 1–15, 2018.Google Scholar
  29. 29.
    Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–4.CrossRefGoogle Scholar
  30. 30.
    Azwadi CSN, Adamu IM. Turbulent force convective heat transfer of hybrid nano fluid in a circular channel with constant heat flux. J Adv Res Fluid Mech Therm Sci. 2016;24(1):1–11.Google Scholar
  31. 31.
    Sidik NAC, Yazid MNAWM, Mamat R. A review on the application of nanofluids in vehicle engine cooling system. Int Commun Heat Mass Transf. 2015;68:85–90.CrossRefGoogle Scholar
  32. 32.
    Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007;27(8–9):1501–6.CrossRefGoogle Scholar
  33. 33.
    Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28(14–15):1774–81.CrossRefGoogle Scholar
  34. 34.
    Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf. 2005;48(13):2652–61.CrossRefGoogle Scholar
  35. 35.
    Park KJ, Jung D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy Build. 2007;39(9):1061–4.CrossRefGoogle Scholar
  36. 36.
    Alawi OA, Sidik NAC, Kherbeet AS. Nanorefrigerant effects in heat transfer performance and energy consumption reduction: a review. Int Commun Heat Mass Transf. 2015;69:76–83.CrossRefGoogle Scholar
  37. 37.
    Srikant RR, Rao DN, Subrahmanyam MS, Krishna PV. Applicability of cutting fluids with nanoparticle inclusion as coolants in machining. Proc Inst Mech Eng Part J J Eng Tribol. 2009;223(2):221–5.CrossRefGoogle Scholar
  38. 38.
    Basu S, Miglani A. Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review. Int J Heat Mass Transf. 2016;96:482–503.CrossRefGoogle Scholar
  39. 39.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorim. 2018;131(3):2027–39.CrossRefGoogle Scholar
  40. 40.
    Nalwa HS. Encyclopedia of nanoscience and nanotechnology, vol. 6. Los Angles: American Scientific Publishers; 2004.Google Scholar
  41. 41.
    Akilu S, Sharma KV, Baheta AT, Mamat R. A review of thermophysical properties of water based composite nanofluids. Renew Sustain Energy Rev. 2016;66:654–78.CrossRefGoogle Scholar
  42. 42.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–70.CrossRefGoogle Scholar
  43. 43.
    Ho CJ, Huang JB, Tsai PS, Yang YM. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transf. 2010;37(5):490–4.CrossRefGoogle Scholar
  44. 44.
    Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.CrossRefGoogle Scholar
  45. 45.
    Hussein AK. Applications of nanotechnology to improve the performance of solar collectors—recent advances and overview. Renew Sustain Energy Rev. 2016;62:767–92.CrossRefGoogle Scholar
  46. 46.
    Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):1–9.CrossRefGoogle Scholar
  47. 47.
    Chopkar M, Kumar S, Bhandari DR, Das PK, Manna I. Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Mater Sci Eng B Solid-State Mater Adv Technol. 2007;139(2–3):141–8.CrossRefGoogle Scholar
  48. 48.
    Suresh S, Venkitaraj KP, Selvakumar P. Synthesis, characterisation of Al2O3–Cu nano composite powder and water based nanofluids. Adv Mater Res. 2011;328–330:1560–7.CrossRefGoogle Scholar
  49. 49.
    Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39(6):6415–25.CrossRefGoogle Scholar
  50. 50.
    Chen LF, Cheng M, Yang DJ, Yang L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater. 2014;548–549:118–23.Google Scholar
  51. 51.
    Hamzah MH, Sidik NAC, Ken TL, Mamat R, Najafi G. Factors affecting the performance of hybrid nanofluids: a comprehensive review. Int J Heat Mass Transf. 2017;115:630–46.CrossRefGoogle Scholar
  52. 52.
    Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6:147059.CrossRefGoogle Scholar
  53. 53.
    Hedayati-Mehdiabadi E, Sarhaddi F, Sobhnamayan F. Energy analysis of a stepped cascade solar still connected to photovoltaic thermal collector. Int J Automot Mech Eng. 2017;14(4):4805–25.CrossRefGoogle Scholar
  54. 54.
    Yazdanpanahi J, Sarhaddi F, Mahdavi Adeli M. Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses. Sol Energy. 2015;118:197–208.CrossRefGoogle Scholar
  55. 55.
    Fudholi A, Sopian K, Yazdi MH, Ruslan MH, Ibrahim A, Kazem HA. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers Manag. 2014;78:641–51.CrossRefGoogle Scholar
  56. 56.
    Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30(3):231–95.CrossRefGoogle Scholar
  57. 57.
    Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53.CrossRefGoogle Scholar
  58. 58.
    An W, Wu J, Zhu T, Zhu Q. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Appl Energy. 2016;184:197–206.CrossRefGoogle Scholar
  59. 59.
    Crisostomo F, Hjerrild N, Mesgari S, Li Q, Taylor RA. A hybrid PV/T collector using spectrally selective absorbing nanofluids. Appl Energy. 2017;193:1–14.CrossRefGoogle Scholar
  60. 60.
    Hjerrild NE, Mesgari S, Crisostomo F, Scott JA, Amal R, Taylor RA. Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids. Sol Energy Mater Sol Cells. 2016;147:281–7.CrossRefGoogle Scholar
  61. 61.
    Hassani S, Taylor RA, Mekhilef S, Saidur R. A cascade nanofluid-based PV/T system with optimized optical and thermal properties. Energy. 2016;112:963–75.CrossRefGoogle Scholar
  62. 62.
    Jing D, Hu Y, Liu M, Wei J, Guo L. Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system. Sol Energy. 2015;112:30–40.CrossRefGoogle Scholar
  63. 63.
    Tyagi VV, Kaushik SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew Sustain Energy Rev. 2012;16(3):1383–98.CrossRefGoogle Scholar
  64. 64.
    Charalambous PG, Maidment GG, Kalogirou SA, Yiakoumetti K. Photovoltaic thermal (PV/T) collectors: a review. Appl Therm Eng. 2007;27(2–3):275–86.CrossRefGoogle Scholar
  65. 65.
    Zondag HA. Flat-plate PV-thermal collectors and systems: a review. Renew Sustain Energy Rev. 2008;12(4):891–959.CrossRefGoogle Scholar
  66. 66.
    Chow TT. A review on photovoltaic/thermal hybrid solar technology. Appl Energy. 2010;87(2):365–79.CrossRefGoogle Scholar
  67. 67.
    Fernández-García A, Zarza E, Valenzuela L, Pérez M. Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev. 2010;14(7):1695–721.CrossRefGoogle Scholar
  68. 68.
    Suman S, Khan MK, Pathak M. Performance enhancement of solar collectors–a review. Renew Sustain Energy Rev. 2015;49:192–210.CrossRefGoogle Scholar
  69. 69.
    He YL, Xiao J, Cheng ZD, Tao YB. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energy. 2011;36(3):976–85.CrossRefGoogle Scholar
  70. 70.
    Morin G, Dersch J, Platzer W, Eck M, Häberle A. Comparison of linear fresnel and parabolic trough collector power plants. Sol Energy. 2012;86(1):1–12.CrossRefGoogle Scholar
  71. 71.
    Salgado Conrado L, Rodriguez-Pulido A, Calderón G. Thermal performance of parabolic trough solar collectors. Renew Sustain Energy Rev. 2017;67:1345–59.CrossRefGoogle Scholar
  72. 72.
    El Gharbi N, Derbal H, Bouaichaoui S, Said N. A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Proced. 2011;6:565–72.CrossRefGoogle Scholar
  73. 73.
    Sahoo SS, Singh S, Banerjee R. Analysis of heat losses from a trapezoidal cavity used for Linear Fresnel Reflector system. Sol Energy. 2012;86(5):1313–22.CrossRefGoogle Scholar
  74. 74.
    Montes MJ, Rubbia C, Abbas R, Martínez-Val JM. A comparative analysis of configurations of linear fresnel collectors for concentrating solar power. Energy. 2014;73:192–203.CrossRefGoogle Scholar
  75. 75.
    Shahin MS, Orhan MF, Uygul F. Thermodynamic analysis of parabolic trough and heliostat field solar collectors integrated with a Rankine cycle for cogeneration of electricity and heat. Sol Energy. 2016;136:183–96.CrossRefGoogle Scholar
  76. 76.
    Saghafifar M, Gadalla M. Thermo-economic evaluation of water-injected air bottoming cycles hybridization using heliostat field collector: comparative analyses. Energy. 2017;119:1230–46.CrossRefGoogle Scholar
  77. 77.
    Saghafifar M, Gadalla M. Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: comparative analysis. Appl Energy. 2017;190:686–702.CrossRefGoogle Scholar
  78. 78.
    Wu SY, Xiao L, Cao Y, Li YR. A parabolic dish/AMTEC solar thermal power system and its performance evaluation. Appl Energy. 2010;87(2):452–62.CrossRefGoogle Scholar
  79. 79.
    Mawire A, Taole SH. Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes. Energy Sustain Dev. 2014;19(1):162–9.CrossRefGoogle Scholar
  80. 80.
    Arora R, Kaushik SC, Kumar R, Arora R. Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. Int J Electr Power Energy Syst. 2016;74:25–35.CrossRefGoogle Scholar
  81. 81.
    Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power. Sol Energy Mater Sol Cells. 2011;95(10):2703–25.CrossRefGoogle Scholar
  82. 82.
    Duffie JA, Beckman WA, Worek WM. Solar engineering of thermal processes. 4th ed. New York: Wiley; 2003.Google Scholar
  83. 83.
    Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev. 2018;84:54–74.CrossRefGoogle Scholar
  84. 84.
    Krishnamurthy P, Mishra S, Banerjee R. An analysis of costs of parabolic trough technology in India. Energy Policy. 2012;48:407–19.CrossRefGoogle Scholar
  85. 85.
    Gabbrielli R, Castrataro P, Del Medico F, Di Palo M, Lenzo B. Levelized cost of heat for linear Fresnel concentrated solar systems. Energy Proced. 2013;49:1340–9.CrossRefGoogle Scholar
  86. 86.
    Gavagnin G, Sánchez D, Martínez GS, Rodríguez JM, Muñoz A. Cost analysis of solar thermal power generators based on parabolic dish and micro gas turbine: manufacturing, transportation and installation. Appl Energy. 2017;194:108–22.CrossRefGoogle Scholar
  87. 87.
    Kennedy CE, Terwilliger K. Optical durability of candidate solar reflectors. J Sol Energy Eng. 2005;127(2):262.CrossRefGoogle Scholar
  88. 88.
    Weinstein LA, Loomis J, Bhatia B, Bierman DM, Wang EN, Chen G. Concentrating solar power. Chem Rev. 2015;115(23):12797–838.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Arai N, Itaya Y, Hasatani M. Development of a ‘volume heat-trap’ type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiation. Sol Energy. 1984;32(1):49–56.CrossRefGoogle Scholar
  90. 90.
    Bertocchi R, Karni J, Kribus A. Experimental evaluation of a non-isothermal high temperature solar particle receiver. Energy. 2004;29(5–6):687–700.CrossRefGoogle Scholar
  91. 91.
    Otanicar TP, Phelan PE, Golden JS. Optical properties of liquids for direct absorption solar thermal energy systems. Sol Energy. 2009;83(7):969–77.CrossRefGoogle Scholar
  92. 92.
    Huang BJ, Wung TY, Nieh S. Thermal analysis of black liquid cylindrical. Sol Energy. 1979;22:221–4.CrossRefGoogle Scholar
  93. 93.
    Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J Sol Energy Eng. 2009;131(4):041004.CrossRefGoogle Scholar
  94. 94.
    Howell JR, Siegel R, Menguc MP. Thermal radiation heat transfer. 5th ed. Boca Raton, FL: CRC Press; 2010.CrossRefGoogle Scholar
  95. 95.
    Khullar V, Tyagi H, Phelan PE, Otanicar TP, Singh H, Taylor RA. Solar energy harvesting using nanofluids-based concentrating solar collector dispersing. J Nanotechnol Eng Med. 2013;3(3):031003.CrossRefGoogle Scholar
  96. 96.
    Xu G, Chen W, Deng S, Zhang X, Zhao S. Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator. Nanomaterials. 2015;5(4):2131–47.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Menbari A, Alemrajabi AA, Rezaei A. Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector. Appl Therm Eng. 2016;104:176–83.CrossRefGoogle Scholar
  98. 98.
    Chen W, Xu G, Zhao S, Zhang X, Numerical simulation on the performance of nanofluid-based direct absorption solar collector with parabolic trough concentrator, In: Proc. ASME 2016 5th Int. Conf. Micro/Nanoscale Heat Mass Transf., vol. 1, pp. 1–9, 2016.Google Scholar
  99. 99.
    Toppin-Hector A, Singh H. Development of a nano-heat transfer fluid carrying direct absorbing receiver for concentrating solar collectors. Int J Low-Carbon Technol. 2016;11(2):199–204.CrossRefGoogle Scholar
  100. 100.
    Freedman JP, Wang H. Analysis of nanofluid-based parabolic trough collectors for solar thermal applications. J Sol Energy Eng. 2018;140:1–8.CrossRefGoogle Scholar
  101. 101.
    O’Keeffe GJ, Mitchell SL, Myers TG, Cregan V. Modelling the efficiency of a low-profile nanofluid-based direct absorption parabolic trough solar collector. Int J Heat Mass Transf. 2018;126:613–24.CrossRefGoogle Scholar
  102. 102.
    Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA. Nanofluid-based direct absorption solar collector. J Renew Sustain Energy. 2010;2(3):033102.CrossRefGoogle Scholar
  103. 103.
    Taylor RA, Phelan PE, Otanicar TP, Walker CA, Nguyen M, Trimble S, Prasher R. Applicability of nanofluids in high flux solar collectors. J Renew Sustain Energy. 2011;3(2):023104.CrossRefGoogle Scholar
  104. 104.
    Saidur R, Meng TC, Said Z, Hasanuzzaman M, Kamyar A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf. 2012;55(21–22):5899–907.CrossRefGoogle Scholar
  105. 105.
    Gupta HK, Das Agrawal G, Mathur J. Investigations for effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud Therm Eng. 2015;5:70–8.CrossRefGoogle Scholar
  106. 106.
    Parvin S, Nasrin R, Alim MA. Heat transfer and entropy generation through nanofluid filled direct absorption solar collector. Int J Heat Mass Transf. 2014;71:386–95.CrossRefGoogle Scholar
  107. 107.
    Karami M, Akhavan Bahabadi MA, Delfani S, Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells. 2014;121:114–8.CrossRefGoogle Scholar
  108. 108.
    Khullar V, Tyagi H, Hordy N, Otanicar TP, Hewakuruppu Y, Modi P, Taylor RA. Harvesting solar thermal energy through nanofluid-based volumetric absorption systems. Int J Heat Mass Transf. 2014;77:377–84.CrossRefGoogle Scholar
  109. 109.
    Han D, Meng Z, Wu D, Zhang C, Zhu H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett. 2012;6(1):1–7.Google Scholar
  110. 110.
    Chen M, He Y, Zhu J, Kim DR. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Convers Manag. 2016;112:21–30.CrossRefGoogle Scholar
  111. 111.
    Lenert A, Wang EN. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy. 2012;86(1):253–65.CrossRefGoogle Scholar
  112. 112.
    Luo Z, Wang C, Wei W, Xiao G, Ni M. Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. Int J Heat Mass Transf. 2014;75:262–71.CrossRefGoogle Scholar
  113. 113.
    Liu J, Ye Z, Zhang L, Fang X, Zhang Z. A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Sol Energy Mater Sol Cells. 2015;136:177–86.CrossRefGoogle Scholar
  114. 114.
    Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018;1:1–24.Google Scholar
  115. 115.
    Midhun Mohan V, Sajeeb AM. Improving the efficiency of DASC by adding CeO2/CuO hybrid nanoparticles in water. Int J Nanosci. 2018;17(01n02):1760011.CrossRefGoogle Scholar
  116. 116.
    Sharaf OZ, Kyritsis DC, Abu-Nada E. Impact of nanofluids, radiation spectrum, and hydrodynamics on the performance of direct absorption solar collectors. Energy Convers Manag. 2018;156:706–22.CrossRefGoogle Scholar
  117. 117.
    Gorji TB, Ranjbar AA. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew Sustain Energy Rev. 2017;72:10–32.CrossRefGoogle Scholar
  118. 118.
    Taylor RA, Phelan PE, Otanicar TP, Tyagi H, Trimble S. Applicability of nanofluids in concentrated solar energy harvesting. ASME 2010 4th Int Conf Energy Sustain. 2010;1:825–32.CrossRefGoogle Scholar
  119. 119.
    Li Q, Zheng C, Mesgari S, Hewakuruppu YL, Hjerrild N, Crisostomo F, Morrison K, Woffenden A, Rosengarten G, Scott JA, Taylor RA, Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector. vol. 2015;9668(2): 96683P.Google Scholar
  120. 120.
    Menbari A, Alemrajabi AA, Rezaei A. Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids. Exp Therm Fluid Sci. 2017;80:218–27.CrossRefGoogle Scholar
  121. 121.
    Kasaeian A, Daneshazarian R, Rezaei R, Pourfayaz F, Kasaeian G. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. J Clean Prod. 2017;158:276–84.CrossRefGoogle Scholar
  122. 122.
    Bortolato M, Dugaria S, Agresti F, Barison S, Fedele L, Sani E, Del Col D. Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector. Energy Convers Manag. 2017;150(August):693–703.CrossRefGoogle Scholar
  123. 123.
    Khullar V, Bhalla V, Tyagi H. Potential heat transfer fluids (nanofluids) for direct volumetric absorption-based solar thermal systems. J Therm Sci Eng Appl. 2017;10(1):011009.CrossRefGoogle Scholar
  124. 124.
    O’Keeffe GJ, Mitchell SL, Myers TG, Cregan V. Modelling the efficiency of a nanofluid-based direct absorption parabolic trough solar collector. Sol Energy. 2018;159:44–54.CrossRefGoogle Scholar
  125. 125.
    Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett. 2011;6(1):1–11.CrossRefGoogle Scholar
  126. 126.
    Li Q, Zheng C, Mesgari S, Hewkuruppu YL, Hjerrild N, Crisostomo F, Rosengarten G, Scott JA, Taylor RA. Experimental and numerical investigation of volumetric versus surface solar absorbers for a concentrated solar thermal collector. Sol Energy. 2016;136:349–64.CrossRefGoogle Scholar
  127. 127.
    Kaluri R, Vijayaraghavan S, Ganapathisubbu S. Model development and performance studies of a concentrating direct absorption solar collector. J Sol Energy Eng. 2014;137(2):021005.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Radzi Abdul Rasih
    • 1
    • 2
  • Nor Azwadi Che Sidik
    • 3
    Email author
  • Syahrullail Samion
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversiti Teknologi MARA Cawangan Johor Kampus Pasir GudangMasai, JohorMalaysia
  2. 2.School of Mechanical Engineering, Faculty of EngineeringUniversiti Teknologi Malaysia, UTM SkudaiJohorMalaysia
  3. 3.Malaysia – Japan International Institute of Technology (MJIIT)University Teknologi Malaysia Kuala LumpurKuala LumpurMalaysia

Personalised recommendations