Advertisement

Reaction chemistry and kinetics of corn stalk pyrolysis without and with Ga/HZSM-5

  • Ben Huang
  • Xinyue Xie
  • Yang Yang
  • Md. Maksudur Rahman
  • Xingguang Zhang
  • Xi Yu
  • Paula H. Blanco
  • Zhujun Dong
  • Yuqing Zhang
  • Anthony V. Bridgwater
  • Junmeng Cai
Article
  • 20 Downloads

Abstract

The bifunctional Ga/HZSM-5 catalyst has been proven having the capability to increase the selectivity of aromatics production during catalytic pyrolysis of furan and woody biomass. However, the reaction chemistry and kinetics of pyrolysis of herbaceous biomass promoted by Ga/HZSM-5 is rarely reported. Pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) analysis and non-isothermal thermogravimetric analysis at four heating rates were carried out to investigate the decomposition behavior and pyrolysis kinetics of corn stalk without and with Ga/HZSM-5. The effective activation energies for corn stalk pyrolysis were calculated by using the Friedman isoconversional method. The Py–GC/MS analysis results indicated that the Ga/HZSM-5 catalyst had a high selectivity toward producing the aromatic chemicals of xylene, toluene and benzene, whereas the major products from non-catalytic pyrolysis of corn stalk were oxygenated compounds. The presence of Ga/HZSM-5 could significantly reduce the effective activation energies of corn stalk pyrolysis from 159.9–352.4 kJ mol−1 to 41.6–99.8 kJ mol−1 in the conversion range of 0.10–0.85.

Keywords

Catalytic pyrolysis Biomass Kinetics Isoconversional kinetic analysis Py–GC/MS TG 

Notes

Acknowledgements

Junmeng Cai and Yuqing Zhang acknowledge the financial support from the GCRF Networking Grant (Project No.: GCRFNG\100203; Project Title: Pyrolysis of Municipal Organic Waste for Renewable Road Construction Materials). The authors acknowledge Mr. Yang Yu, Analyst in the Nielsen Company (Shanghai) Limited, for his help in TG, and Dr. Daniel Nowakowski, EBRI Laboratory Manager, for his help in Py–GC/MS analysis.

Supplementary material

10973_2018_7962_MOESM1_ESM.docx (402 kb)
Supplementary material 1 (DOCX 402 kb)

References

  1. 1.
    Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O. Biofuels: environment, technology and food security. Renew Sustain Energy Rev. 2009;13(6):1275–87.  https://doi.org/10.1016/j.rser.2008.08.014.CrossRefGoogle Scholar
  2. 2.
    Vadenbo C, Tonini D, Astrup TF. Environmental multiobjective optimization of the use of biomass resources for energy. Environ Sci Technol. 2017;51(6):3575–83.  https://doi.org/10.1021/acs.est.6b06480.CrossRefGoogle Scholar
  3. 3.
    Weng Z, Dai H, Ma Z, Xie Y, Wang P. A general equilibrium assessment of economic impacts of provincial unbalanced carbon intensity targets in China. Resour Conserv Recycl. 2018;133:157–68.  https://doi.org/10.1016/j.resconrec.2018.01.032.CrossRefGoogle Scholar
  4. 4.
    Dong Z, Yang Y, Cai W, He Y, Chai M, Liu B, et al. Theoretical analysis of double Logistic distributed activation energy model for thermal decomposition kinetics of solid fuels. Ind Eng Chem Res. 2018;57(23):7817–25.  https://doi.org/10.1021/acs.iecr.8b01527.CrossRefGoogle Scholar
  5. 5.
    Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, et al. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev. 2017;76:309–22.  https://doi.org/10.1016/j.rser.2017.03.072.CrossRefGoogle Scholar
  6. 6.
    Makarfi Isa Y, Ganda ET. Bio-oil as a potential source of petroleum range fuels. Renew Sustain Energy Rev. 2018;81:69–75.  https://doi.org/10.1016/j.rser.2017.07.036.CrossRefGoogle Scholar
  7. 7.
    Garcia-Nunez JA, Pelaez-Samaniego MR, Garcia-Perez ME, Fonts I, Abrego J, Westerhof RJM, et al. Historical developments of pyrolysis reactors: a review. Energy Fuels. 2017;31(6):5751–75.  https://doi.org/10.1021/acs.energyfuels.7b00641.CrossRefGoogle Scholar
  8. 8.
    Yu Y, Yang Y, Cheng Z, Blanco PH, Liu R, Bridgwater AV, et al. Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures. Energy Fuels. 2016;30(12):10568–74.  https://doi.org/10.1021/acs.energyfuels.6b02276.CrossRefGoogle Scholar
  9. 9.
    Huang L, Ding T, Liu R, Cai J. Prediction of concentration profiles and theoretical yields in lignocellulosic biomass pyrolysis. J Therm Anal Calorim. 2015;120(2):1473–82.  https://doi.org/10.1007/s10973-014-4383-1.CrossRefGoogle Scholar
  10. 10.
    Roy P, Dias G. Prospects for pyrolysis technologies in the bioenergy sector: a review. Renew Sustain Energy Rev. 2017;77:59–69.  https://doi.org/10.1016/j.rser.2017.03.136.CrossRefGoogle Scholar
  11. 11.
    Cai J, Banks SW, Yang Y, Darbar S, Bridgwater T. Viscosity of aged bio-oils from fast pyrolysis of beech wood and Miscanthus: shear rate and temperature dependence. Energy Fuels. 2016;30(6):4999–5004.  https://doi.org/10.1021/acs.energyfuels.6b00640.CrossRefGoogle Scholar
  12. 12.
    Gayubo AG, Valle B, Aramburu B, Montero C, Bilbao J. Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3. Chem Eng J. 2018;332:192–204.  https://doi.org/10.1016/j.cej.2017.09.063.CrossRefGoogle Scholar
  13. 13.
    Zhang L, Liu R, Yin R, Mei Y. Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev. 2013;24:66–72.  https://doi.org/10.1016/j.rser.2013.03.027.CrossRefGoogle Scholar
  14. 14.
    Rahman MM, Liu R, Cai J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil: a review. Fuel Process Technol. 2018;180:32–46.  https://doi.org/10.1016/j.fuproc.2018.08.002.CrossRefGoogle Scholar
  15. 15.
    Venderbosch RH. A critical view on catalytic pyrolysis of biomass. ChemSusChem. 2015;8(8):1306–16.CrossRefGoogle Scholar
  16. 16.
    Kabir G, Hameed BH. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew Sustain Energy Rev. 2017;70(Supplement C):945–67.  https://doi.org/10.1016/j.rser.2016.12.001.CrossRefGoogle Scholar
  17. 17.
    Várhegyi G, Wang L, Skreiberg Ø. Towards a meaningful non-isothermal kinetics for biomass materials and other complex organic samples. J Therm Anal Calorim. 2018;133(1):703–12.  https://doi.org/10.1007/s10973-017-6893-0.CrossRefGoogle Scholar
  18. 18.
    Wang X, Wang X, Qin G, Chen M, Wang J. Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed. J Therm Anal Calorim. 2018;132(2):1317–23.  https://doi.org/10.1007/s10973-018-6987-3.CrossRefGoogle Scholar
  19. 19.
    Chen T, Li L, Zhao R, Wu J. Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin. J Therm Anal Calorim. 2017;128(3):1825–32.  https://doi.org/10.1007/s10973-016-6040-3.CrossRefGoogle Scholar
  20. 20.
    Batista R Jr, Araújo BSA, Franco PIBM, Silvério BC, Danta SC, dos Santos KG. Global reaction model to describe the kinetics of catalytic pyrolysis of coffee grounds waste. Mater Sci Forum. 2017;899:173–8.  https://doi.org/10.4028/www.scientific.net/MSF.899.173.CrossRefGoogle Scholar
  21. 21.
    Bu Q, Lei H, Qian M, Yadavalli G. A thermal behavior and kinetics study of the catalytic pyrolysis of lignin. RSC Adv. 2016;6(103):100700–7.  https://doi.org/10.1039/c6ra22967k.CrossRefGoogle Scholar
  22. 22.
    Poddar S, De S, Chowdhury R. Catalytic pyrolysis of lignocellulosic bio-packaging (jute) waste-kinetics using lumped and DAE (distributed activation energy) models and pyro-oil characterization. RSC Adv. 2015;5(120):98934–45.  https://doi.org/10.1039/c5ra18435e.CrossRefGoogle Scholar
  23. 23.
    Li B, Lv W, Zhang Q, Wang T, Ma L. Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: kinetics and products. J Anal Appl Pyrolysis. 2014;108(Suppl C):295–300.  https://doi.org/10.1016/j.jaap.2014.04.002.CrossRefGoogle Scholar
  24. 24.
    Lu C, Song W, Lin W. Kinetics of biomass catalytic pyrolysis. Biotechnol Adv. 2009;27(5):583–7.  https://doi.org/10.1016/j.biotechadv.2009.04.014.CrossRefGoogle Scholar
  25. 25.
    Chandrasekaran SR, Kunwar B, Moser BR, Rajagopalan N, Sharma BK. Catalytic thermal cracking of postconsumer waste plastics to fuels. 1. Kinetics and optimization. Energy Fuels. 2015;29(9):6068–77.  https://doi.org/10.1021/acs.energyfuels.5b01083.CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S. A time to search: finding the meaning of variable activation energy. Phys Chem Chem Phys. 2016;18(28):18643–56.  https://doi.org/10.1039/c6cp02491b.CrossRefGoogle Scholar
  27. 27.
    Huang YW, Chen MQ, Luo HF. Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model. Chem Eng J. 2016;298:154–61.  https://doi.org/10.1016/j.cej.2016.04.018.CrossRefGoogle Scholar
  28. 28.
    Carrier M, Auret L, Bridgwater A, Knoetze JH. Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy Fuels. 2016;30(10):7834–41.  https://doi.org/10.1021/acs.energyfuels.6b00794.CrossRefGoogle Scholar
  29. 29.
    Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sustain Energy Rev. 2018;82(Part 3):2705–15.  https://doi.org/10.1016/j.rser.2017.09.113.CrossRefGoogle Scholar
  30. 30.
    Yu Y, Fu X, Yu L, Liu R, Cai J. Combustion kinetics of pine sawdust biochar: data smoothing and isoconversional kinetic analysis. J Therm Anal Calorim. 2016;124(3):1641–9.  https://doi.org/10.1007/s10973-016-5296-y.CrossRefGoogle Scholar
  31. 31.
    Cheng YT, Jae J, Shi J, Fan W, Huber GW. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew Chem Int Ed. 2012;51(6):1387–90.  https://doi.org/10.1002/anie.201107390.CrossRefGoogle Scholar
  32. 32.
    Kelkar S, Saffron CM, Li ZL, Kim SS, Pinnavaia TJ, Miller DJ, et al. Aromatics from biomass pyrolysis vapour using a bifunctional mesoporous catalyst. Green Chem. 2014;16(2):803–12.  https://doi.org/10.1039/C3GC41350K.CrossRefGoogle Scholar
  33. 33.
    Cai J, Chen Y. Iterative linear integral isoconversional method: theory and application. Bioresour Technol. 2012;103(1):309–12.  https://doi.org/10.1016/j.biortech.2011.10.008.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cai J, Chen S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem. 2010;30(13):1986–91.CrossRefGoogle Scholar
  35. 35.
    Cheng Z, Wu W, Ji P, Zhou X, Liu R, Cai J. Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J Therm Anal Calorim. 2015;119(2):1429–38.  https://doi.org/10.1007/s10973-014-4215-3.CrossRefGoogle Scholar
  36. 36.
    Wu W, Cai J, Liu R. Isoconversional kinetic analysis of distributed activation energy model processes for pyrolysis of solid fuels. Ind Eng Chem Res. 2013;52(40):14376–83.  https://doi.org/10.1021/ie4021123.CrossRefGoogle Scholar
  37. 37.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47(3):852–908.  https://doi.org/10.1039/C7CS00566K.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Lukasik RM, et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem. 2017;19(18):4200–33.  https://doi.org/10.1039/C7GC01479A.CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Huber GW. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev. 2018;47(4):1351–90.  https://doi.org/10.1039/C7CS00213K.CrossRefGoogle Scholar
  40. 40.
    Nolte MW, Shanks BH. A perspective on catalytic strategies for deoxygenation in biomass pyrolysis. Energy Technol. 2017;5(1):7–18.  https://doi.org/10.1002/ente.201600096.CrossRefGoogle Scholar
  41. 41.
    Carlson TR, Cheng Y-T, Jae J, Huber GW. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ Sci. 2011;4(1):145–61.  https://doi.org/10.1039/C0EE00341G.CrossRefGoogle Scholar
  42. 42.
    Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science. 2010;330(6008):1222–7.  https://doi.org/10.1126/science.1194218.CrossRefGoogle Scholar
  43. 43.
    Li H, Fang Z, Smith RL Jr, Yang S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog Energy Combust Sci. 2016;55:98–194.  https://doi.org/10.1016/j.pecs.2016.04.004.CrossRefGoogle Scholar
  44. 44.
    Yung MM, Stanton AR, Iisa K, French RJ, Orton KA, Magrini KA. Multiscale evaluation of catalytic upgrading of biomass pyrolysis vapors on Ni- and Ga-modified ZSM-5. Energy Fuels. 2016;30(11):9471–9.  https://doi.org/10.1021/acs.energyfuels.6b01866.CrossRefGoogle Scholar
  45. 45.
    Hoff TC, Gardner DW, Thilakaratne R, Wang K, Hansen TW, Brown RC, et al. Tailoring ZSM-5 zeolites for the fast pyrolysis of biomass to aromatic hydrocarbons. ChemSusChem. 2016;9(12):1473–82.  https://doi.org/10.1002/cssc.201600186.CrossRefGoogle Scholar
  46. 46.
    Saha B, Reddy PK, Chowlu ACK, Ghoshal AK. Model-free kinetics analysis of nanocrystalline HZSM-5 catalyzed pyrolysis of polypropylene (PP). Thermochim Acta. 2008;468(1–2):94–100.  https://doi.org/10.1016/j.tca.2007.12.004.CrossRefGoogle Scholar
  47. 47.
    Saha B, Ghoshal AK. Model-free kinetics analysis of ZSM-5 catalyzed pyrolysis of waste LDPE. Thermochim Acta. 2007;453(2):120–7.  https://doi.org/10.1016/j.tca.2006.11.012.CrossRefGoogle Scholar
  48. 48.
    Vyazovkin S. On the phenomenon of variable activation energy for condensed phase reactions. New J Chem. 2000;24(11):913–7.  https://doi.org/10.1039/b004279j.CrossRefGoogle Scholar
  49. 49.
    Wu W, Mei Y, Le Z, Liu R, Cai J. Effective activation energies of lignocellulosic biomass prolysis. Energy Fuels. 2014;28(6):3916–23.  https://doi.org/10.1021/ef5005896.CrossRefGoogle Scholar
  50. 50.
    Wu W, Mei Y, Zhang L, Liu R, Cai J. Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste. Fuel. 2015;156(Supplement C):71–80.  https://doi.org/10.1016/j.fuel.2015.04.016.CrossRefGoogle Scholar
  51. 51.
    Belyi VA, Udoratina EV, Kuchin AV. Kinetics of the thermocatalytic conversion of lignocellulose. Kinet Catal. 2015;56(5):663–9.  https://doi.org/10.1134/S002315841505002X.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ben Huang
    • 1
  • Xinyue Xie
    • 1
  • Yang Yang
    • 2
  • Md. Maksudur Rahman
    • 1
  • Xingguang Zhang
    • 3
  • Xi Yu
    • 2
  • Paula H. Blanco
    • 2
  • Zhujun Dong
    • 1
  • Yuqing Zhang
    • 4
  • Anthony V. Bridgwater
    • 2
  • Junmeng Cai
    • 1
  1. 1.Biomass Energy Engineering Research Center, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Bioenergy Research Group, European Bioenergy Research Institute (EBRI)Aston UniversityBirminghamUK
  3. 3.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  4. 4.Aston Institute of Materials Research (AIMR)Aston UniversityBirminghamUK

Personalised recommendations