Nucleating and retarding effects of nanohydroxyapatite on the crystallization of poly(butylene terephthalate-co-alkylene dicarboxylate)s with different lengths

  • Nina Heidarzadeh
  • Mehdi RafizadehEmail author
  • Faramarz Afshar Taromi
  • Jordi Puiggalí
  • Luis J. del Valle


New biodegradable and biocompatible composites are continuously developed for biomedical applications (e.g., from drug delivery devices to tissue engineering scaffolds). Properties of such systems may depend on their morphology and structure, which are attained after their processing, and therefore, the study of the crystallization kinetics has a particular relevance. The crystallization kinetics of hydroxyapatite-filled poly(butylene terephthalate-co-alkylene dicarboxylate)s has been studied under non-isothermal conditions, using a wide range of cooling rates and different kinetic models. Based on our results, nanohydroxyapatite (nHAp) particles were found to effectively act as additional nucleation sites for poly(butylene terephthalate-co-succinate) (PBST), giving rise to an increased crystallization rate with respect to pure PBST. However, the overall growth rate of HAp nanocomposites decreased compared to the corresponding homopolymers with longer aliphatic dicarboxylic acids (i.e., adipic and sebacic acid derivatives). In order to clarify this point, the activation energy for non-isothermal crystallization was evaluated using the Friedman method and significant differences were observed, suggesting a disturbing effect of nanoparticles on the motion of molecular chains that hindered their capability to reach the growing crystallization front. Isoconversional methods provided a good understanding of the kinetics of the crystallization process and significant information regarding the activation energy, relative crystallinity, and global and local Avrami exponents.


Non-isothermal crystallization Isokinetic and isoconversional method Poly(alkylene dicarboxylate) Biodegradable polymer Hydroxyapatite 



J.P. and L.V. are thankful for the supports from MINECO and FEDER (MAT2015-69547-R) and the Generalitat de Catalunya (2014SGR188).


  1. 1.
    Letic-Gavrilovic A, Piattelli A, Abe K. Nerve growth factor β (NGF β) delivery via a collagen/hydroxyapatite (Col/HAp) composite and its effects on new bone ingrowth. J Mater Sci Mater Med. 2003;14:95–102.CrossRefGoogle Scholar
  2. 2.
    Wang Y-W, Wu Q, Chen J, Chen G-Q. Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials. 2005;26:899–904.CrossRefGoogle Scholar
  3. 3.
    Sotome S, Uemura T, Kikuchi M, Chen J, Itoh S, Tanaka J, et al. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen–alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater Sci Eng, C. 2004;24:341–7.CrossRefGoogle Scholar
  4. 4.
    Mohanna PN, Young RC, Wiberg M, Terenghi G. A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs. J Anat. 2003;203:553–65.CrossRefPubMedGoogle Scholar
  5. 5.
    Chadda H, Shahar PS, Satapathy BK, Ray AR. Filler-immobilization assisted designing of hydroxyapatite and silica/ hydroxyapatite filled acrylate based dental restorative composites: comparative evaluation of quasi-static and dynamic mechanical properties. J Polym Res. 2016;23:197.CrossRefGoogle Scholar
  6. 6.
    Pielichowska K. The influence of molecular weight on the properties of polyacetal/hydroxyapatite nanocomposites. Part 1. Microstructural analysis and phase transition studies. J Polym Res. 2012;19:9775.CrossRefGoogle Scholar
  7. 7.
    Suebwongnat S, Jianprasert A, Siriphannon P, Monvisade P. Calcium silicate/poly(ethylene terephthalate) biomaterials via ring-opening polymerization. J Polym Res. 2012;19:9985.CrossRefGoogle Scholar
  8. 8.
    Chiu D-J, Li Y, Feng C-K, Yang M-R, Chen K-S, Swieszkowski W. Preparation and enhanced mechanical properties of hydroxyapatite hybrid hydrogels via novel photocatalytic polymerization. J Polym Res. 2017;24:227.CrossRefGoogle Scholar
  9. 9.
    Wang J. Polyether ether ketone. Handb Eng Spec Thermoplast [Internet]. Wiley-Blackwell; 2011 [cited 2018 Oct 19]. p. 55–95.
  10. 10.
    Jayabalan M, Shalumon KT, Mitha MK, Ganesan K, Epple M. Effect of hydroxyapatite on the biodegradation and biomechanical stability of polyester nanocomposites for orthopaedic applications. Acta Biomater. 2010;6:763–75.CrossRefGoogle Scholar
  11. 11.
    Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA, et al. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007;25:11–22.CrossRefGoogle Scholar
  12. 12.
    Chen LJ, Wang M. Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials. 2002;23:2631–9.CrossRefGoogle Scholar
  13. 13.
    Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials. 2003;24:2133–51.CrossRefGoogle Scholar
  14. 14.
    Bonfield W. Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacementa. Ann NY Acad Sci. 1988;523:173–7.CrossRefGoogle Scholar
  15. 15.
    Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C. Effect of palmitic acid on the electrical conductivity of carbon nanotubes- epoxy resin composites. Macromolecules. 2003;36:9678–80.CrossRefGoogle Scholar
  16. 16.
    Papageorgiou GZ, Achilias DS, Bikiaris DN. Crystallization kinetics and melting behaviour of the novel biodegradable polyesters poly (propylene azelate) and poly (propylene sebacate). Macromol Chem Phys. 2009;210:90–107.CrossRefGoogle Scholar
  17. 17.
    Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.CrossRefGoogle Scholar
  18. 18.
    Bosq N, Aht-Ong D. Isothermal and non-isothermal crystallization kinetics of poly(butylene succinate) with nanoprecipitated calcium carbonate as nucleating agent. J Therm Anal Calorim. 2018;132:233–49.CrossRefGoogle Scholar
  19. 19.
    Díaz A, Katsarava R, Puiggalí J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly (ester amide) s. Int J Mol Sci. 2014;15:7064–123.CrossRefPubMedGoogle Scholar
  20. 20.
    Gan Z, Abe H, Doi Y. Biodegradable poly (ethylene succinate)(PES). 2. Crystal morphology of melt-crystallized ultrathin film and its change after enzymatic degradation. Biomacromolecules. 2000;1:713–20.CrossRefGoogle Scholar
  21. 21.
    Gan Z, Abe H, Doi Y. Biodegradable poly (ethylene succinate)(PES). 1. Crystal growth kinetics and morphology. Biomacromolecules. 2000;1:704–12.CrossRefGoogle Scholar
  22. 22.
    Gan Z, Abe H, Doi Y. Crystallization, melting, and enzymatic degradation of biodegradable poly (butylene succinate-co-14 mol ethylene succinate) copolyester. Biomacromol. 2001;2:313–21.CrossRefGoogle Scholar
  23. 23.
    Park SS, Chae SH, Im SS. Transesterification and crystallization behavior of poly (butylene succinate)/poly (butylene terephthalate) block copolymers. J Polym Sci Part Polym Chem. 1998;36:147–56.CrossRefGoogle Scholar
  24. 24.
    Li F, Xu X, Li Q, Li Y, Zhang H, Yu J, et al. Thermal degradation and their kinetics of biodegradable poly (butylene succinate-co-butylene terephthate) s under nitrogen and air atmospheres. Polym Degrad Stab. 2006;91:1685–93.CrossRefGoogle Scholar
  25. 25.
    Wittmann JC, Lotz B. Epitaxial crystallization of aliphatic polyesters on trioxane and various aromatic hydrocarbons. J Polym Sci Polym Phys Ed. 1981;19:1853–64.CrossRefGoogle Scholar
  26. 26.
    Gan Z, Kuwabara K, Yamamoto M, Abe H, Doi Y. Solid-state structures and thermal properties of aliphatic–aromatic poly (butylene adipate-co-butylene terephthalate) copolyesters. Polym Degrad Stab. 2004;83:289–300.CrossRefGoogle Scholar
  27. 27.
    Chen Y, Tan L, Chen L, Yang Y, Wang X. Study on biodegradable aromatic/aliphatic copolyesters. Braz J Chem Eng. 2008;25:321–35.CrossRefGoogle Scholar
  28. 28.
    Ki HC, Park OO. Synthesis, characterization and biodegradability of the biodegradable aliphatic–aromatic random copolyesters. Polymer. 2001;42:1849–61.CrossRefGoogle Scholar
  29. 29.
    Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly (butylene succinate-co-butylene adipate). Polym Degrad Stab. 2006;91:367–76.CrossRefGoogle Scholar
  30. 30.
    Harris JE, Goh SH, Paul DR, Barlow JW. Miscible binary blends containing the polyhydroxy ether of bisphenol-a and various aliphatic polyesters. J Appl Polym Sci. 1982;27:839–55.CrossRefGoogle Scholar
  31. 31.
    Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Exarhopoulos S, Papageorgiou M, Bikiaris DN. Evaluation of polyesters from renewable resources as alternatives to the current fossil-based polymers. Phase transitions of poly (butylene 2, 5-furan-dicarboxylate). Polymer. 2014;55:3846–58.CrossRefGoogle Scholar
  32. 32.
    Codou A, Guigo N, van Berkel J, De Jong E, Sbirrazzuoli N. Non-isothermal crystallization kinetics of biobased poly (ethylene 2, 5-furandicarboxylate) synthesized via the direct esterification process. Macromol Chem Phys. 2014;215:2065–74.CrossRefGoogle Scholar
  33. 33.
    Hu X, Lesser AJ. Non-isothermal crystallization of poly (trimethylene terephthalate)(PTT)/clay nanocomposites. Macromol Chem Phys. 2004;205:574–80.CrossRefGoogle Scholar
  34. 34.
    Martínez-Palau M, Franco L, Puiggalí J. Isothermal crystallization of poly (glycolic acid-alt-6-hydroxyhexanoic acid) studied by DSC and real time synchrotron SAXS/WAXD. Polymer. 2007;48:6018–28.CrossRefGoogle Scholar
  35. 35.
    Long Y, Shanks RA, Stachurski ZH. Kinetics of polymer crystallisation. Prog Polym Sci. 1995;20:651–701.CrossRefGoogle Scholar
  36. 36.
    Heidarzadeh N, Rafizadeh M, Afshar Taromi F, del Valle LJ, Franco L, Puiggalí J. Effect of hydroxyapatite nanoparticles on the degradability of random poly (butylene terephthalate-co-aliphatic dicarboxylate) s having a high content of terephthalic units. Polymers. 2016;8:253.CrossRefGoogle Scholar
  37. 37.
    Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J. Characterization and degradation behavior of poly (butylene adipate-co-terephthalate) s. J Polym Sci Part Polym Chem. 2002;40:4141–57.CrossRefGoogle Scholar
  38. 38.
    Heidarzadeh N, Rafizadeh M, Afshar Taromi F, del Valle LJ, Franco L, Puiggalí J. Thermal degradation of random copolyesters based on 1, 4-butanediol, terepthalic acid and different aliphatic dicarboxylic acids. Thermochim Acta. 2017;654:101–11.CrossRefGoogle Scholar
  39. 39.
    Ou C-F, Chao M-S, Huang S-L. The crystallization behaviors of poly (butylene terephthalate) blended with co [poly (butylene terephthalate-p-oxybenzoate)] copolyesters. Eur Polym J. 2000;36:2665–70.CrossRefGoogle Scholar
  40. 40.
    Nagata M, Kiyotsukuri T, Ibuki H, Tsutsumi N, Sakai W. Synthesis and enzymatic degradation of regular network aliphatic polyesters. React Funct Polym. 1996;30:165–71.CrossRefGoogle Scholar
  41. 41.
    Zhao P, Liu W, Wu Q, Ren J. Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends. J Nanomater. 2010;2010:4.Google Scholar
  42. 42.
    Glass Transition [Internet]. [cited 2018 Oct 19].
  43. 43.
    Tang CY, Chen DZ, Tsui CP, Uskokovic PS, Yu PH, Leung MC. Nonisothermal melt-crystallization kinetics of hydroxyapatite-filled poly (3-hydroxybutyrate) composites. J Appl Polym Sci. 2006;102:5388–95.CrossRefGoogle Scholar
  44. 44.
    Zhang X, Li Y, Lv G, Zuo Y, Mu Y. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites. Polym Degrad Stab. 2006;91:1202–7.CrossRefGoogle Scholar
  45. 45.
    Li Y, Han C, Bian J, Zhang X, Han L, Dong L. Crystallization and morphology studies of biodegradable poly (ε-caprolactone)/silica nanocomposites. Polym Compos. 2013;34:131–40.CrossRefGoogle Scholar
  46. 46.
    Chatterjee T, Yurekli K, Hadjiev VG, Krishnamoorti R. Single-walled carbon nanotube dispersions in poly (ethylene oxide). Adv Funct Mater. 2005;15:1832–8.CrossRefGoogle Scholar
  47. 47.
    Bianchi O, Dal Castel C, de Oliveira RV, Bertuoli PT, Hillig E. Nonisothermal degradation of wood using thermogravimetric measurements. Polímeros. 2010;20:395–400.CrossRefGoogle Scholar
  48. 48.
    Bianchi O, Martins JDN, Fiorio R, Oliveira RVB, Canto LB. Changes in activation energy and kinetic mechanism during EVA crosslinking. Polym Test. 2011;30:616–24.CrossRefGoogle Scholar
  49. 49.
    Guigo N, Van Berkel J, De Jong E, Sbirrazzuoli N. Modelling the non-isothermal crystallization of polymers: application to poly (ethylene 2, 5-furandicarboxylate). Thermochim Acta. 2017;650:66–75.CrossRefGoogle Scholar
  50. 50.
    Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  51. 51.
    Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  52. 52.
    Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.CrossRefGoogle Scholar
  53. 53.
    Christian JW. Formal theory of transformation kinetics. In: Christian JW, editor. Theory transform met alloys (Chap. 12). Oxford: Pergamon; 2002. pp. 529–52.CrossRefGoogle Scholar
  54. 54.
    Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng Z. Nonisothermal crystallization and melting behavior of poly (3-hydroxybutyrate) and maleated poly (3-hydroxybutyrate). Eur Polym J. 2002;38:1663–70.CrossRefGoogle Scholar
  55. 55.
    Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.CrossRefGoogle Scholar
  56. 56.
    Xiong H, Gao Y, Li HM. Non-isothermal crystallization kinetics of syndiotactic polystyrene–polystyrene functionalized SWNTs nanocomposites. Lett. 2007;1:416–26.Google Scholar
  57. 57.
    Silvestre C, Pezzuto M, Duraccio D, Mitchell GR, Cimmino S. Quiescent and shear-induced non-isothermal crystallization of isotactic polypropylene-based nanocomposites. Polym Bull. 2017;74:145–65.CrossRefGoogle Scholar
  58. 58.
    Patel RM, Spruiell JE. Crystallization kinetics during polymer processing—analysis of available approaches for process modeling. Polym Eng Sci. 1991;31:730–8.CrossRefGoogle Scholar
  59. 59.
    Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J Appl Polym Sci. 1973;17:1031–41.CrossRefGoogle Scholar
  60. 60.
    Hoffman JD, Davis GT, Lauritzen JI. The rate of crystallization of linear polymers with chain folding. Treatise Solid State Chem. Berlin: Springer; 1976. p. 497–614.Google Scholar
  61. 61.
    Suzuki T, Kovacs AJ. Temperature dependence of spherulitic growth rate of isotactic polystyrene. A critical comparison with the kinetic theory of surface nucleation. Polym J. 1970;1:82.CrossRefGoogle Scholar
  62. 62.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. Wiley Online Library; 1964. p. 183–195.Google Scholar
  63. 63.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol Sci Technol. 1971;16:22–31.Google Scholar
  64. 64.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and K g) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun. 2004;25:733–8.CrossRefGoogle Scholar
  65. 65.
    Vyazovkin S. Some basics en route to isoconversional methodology. Isoconversional Kinet Therm Stimul Process. Springer; 2015. p. 1–25.Google Scholar
  66. 66.
    Toda A, Oda T, Hikosaka M, Saruyama Y. A new method of analysing transformation kinetics with temperature modulated differential scanning calorimetry: application to polymer crystal growth. Polymer. 1997;38:231–3.CrossRefGoogle Scholar
  67. 67.
    Supaphol P, Dangseeyun N, Srimoaon P. Non-isothermal melt crystallization kinetics for poly (trimethylene terephthalate)/poly (butylene terephthalate) blends. Polym Test. 2004;23:175–85.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyTehranIran
  2. 2.Departament d’Enginyeria Química, Escola d’Enginyeria Barcelona Est (EEB)Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations