Advertisement

Effect of NQ content on the thermal decomposition of nitroguanidine propellant using isoconversional methods

  • Zhi-tao Liu
  • Fen Zhang
  • Ping Du
  • Bin Xu
Article
  • 37 Downloads

Abstract

The effect of nitroguanidine (NQ) content on thermal decomposition of nitroguanidine propellants was studied using three nitroguanidine propellants with different NQ contents (10%, 30% and 47%) and one double-base propellant. The thermal decomposition was investigated by high-pressure differential scanning calorimetry. Results show that heat flow curves of the four tested formulations all had only one exothermic peak, and as the heating rate increased, both the peak temperature and the decomposition heat increased. Calculation of thermal decomposition kinetics of the propellants was performed using multiple-temperature programs. Increased NQ contents changed the mechanism of thermal decomposition of the propellant. The reaction mechanism is chemical reaction for the double-base propellant and the 47%-NQ propellant, phase boundary reaction for the 30%-NQ propellant and nucleation and growth for the 10%-NQ propellant. The thermodynamic parameters indicate that, as the NQ content increases, the critical temperature (Tbe) of thermal explosion of the propellants increases, which leads to higher thermal stability for the 30%-NQ content. Thus, among the three nitroguanidine propellants, the 30%-NQ propellant has a lower thermal stability.

Keywords

Nitroguanidine propellant Thermal decomposition Isoconversional method Reaction kinetics Thermal stability 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO.51506093).

References

  1. 1.
    Pietrzak E, Wiecinska P, Pawlikowska E, Szafran M. Colloidal processing of Al2O3 and BST materials: investigations of thermal stability and decomposition of green bodies. J Therm Anal Calorim. 2017;130(1):365–76.CrossRefGoogle Scholar
  2. 2.
    Lee PP, Back MH. Thermal decomposition of nitroguanidine. Thermochim Acta. 1989;141:305–15.CrossRefGoogle Scholar
  3. 3.
    Lee PP, Back MH. Kinetic studies of the thermal decomposition of nitroguanidine using accelerating rate calorimetry. Thermochim Acta. 1988;127(1):89–100.CrossRefGoogle Scholar
  4. 4.
    Stanković M, Kapor V, Petrović S. The thermal decomposition of triple-base propellants. J Therm Anal Calorim. 1999;56(3):1383–8.CrossRefGoogle Scholar
  5. 5.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  6. 6.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  7. 7.
    Wu X, Rao G, Chen L, Chen W, Wang J, Zhang C. Analysis for decomposition characteristics and piecewise thermokinetics of nitramine modified double-base propellant with high solid content. Propellants Explos Pyrotech. 2017;42(10):1149–54.CrossRefGoogle Scholar
  8. 8.
    Mothé CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113(2):497–505.CrossRefGoogle Scholar
  9. 9.
    Cui H, Jiu J, Sugahara T, Nagao S, Suganuma K, Uchida H, et al. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim. 2015;119(1):425–33.CrossRefGoogle Scholar
  10. 10.
    Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method versus Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117(40):10162.CrossRefPubMedGoogle Scholar
  11. 11.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Sympos. 1964;6(1):183–95.CrossRefGoogle Scholar
  12. 12.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  13. 13.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  14. 14.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  15. 15.
    Zhang F, Liu ZT, Du P. Thermal decomposition kinetics of nitroguanidine propellant under different pressures. Propell Explos Pyrot. 2018;43(4):390–7.CrossRefGoogle Scholar
  16. 16.
    Lavoie J, Petre C, Paradis P, Dubois C. Burning rates and thermal behavior of bistetrazole containing gun propellants. Propell Explos Pyrotech. 2017;42(2):149–57.CrossRefGoogle Scholar
  17. 17.
    Park SS, Hwang IS, Kang MS, Jeong HJ, Hwang J. Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor. J Therm Anal Calorim. 2016;124(2):657–65.CrossRefGoogle Scholar
  18. 18.
    Madhusudanan PM, Krishnan K, Ninan KN. New approximation for the p(x) function in the evaluation of non-isothermal kinetic data. Thermochim Acta. 1986;97(4):189–201.CrossRefGoogle Scholar
  19. 19.
    Roduit B, Hartmann M, Folly P, Brodard P. Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN. J Therm Anal Calorim. 2014;117(3):1017–26.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations