Advertisement

Pyrolysis and its mechanism of organomontmorillonite (OMMT) influenced by different functional groups

  • Liangliang Zhang
  • Jinzhen Cao
Article
  • 9 Downloads

Abstract

In this study, three types of long-chain surfactants including 12-aminododecanoic acid (ADA), hexadecyl trimethyl ammonium bromide (CTAB) and sodium laurylsulfonate (SLS) were intercalated into Na-montmorillonite layers through ion exchange, resulting increased basal spacing of the interlayers, as well as the change of clay surface from hydrophilic to hydrophobic as proved by X-ray diffraction and Fourier transform infrared spectroscopy analyses. Differential thermal analysis, thermogravimetric measurement combined with infrared spectroscopy and derivative thermogravimetric analysis were used to understand the relation between the thermal stability and the molecular structure of the organo-modified montmorillonites. The results showed that MMT increased the decomposition temperature of ADA, delayed the decomposition temperature of CTAB and SLS, and stimulated the generation of CO2. The interlayer space might play a more significant role than the external surface of MMT in influencing the pyrolysis of OMMT.

Keywords

Montmorillonite (MMT) Modification Thermal stability Molecular structure Pyrolysis 

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFD0600203).

References

  1. 1.
    Ahmed L, Zhang B, Shen RQ, Agnew RJ, Park H, Cheng ZD, Mannan MS, Wang QS. Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test. J Therm Anal Calorim. 2018;132:1853–65.CrossRefGoogle Scholar
  2. 2.
    Alves JL, Vieira e Rosa PdT, Morales AR. Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. Appl Clay Sci. 2017;150:23–33.CrossRefGoogle Scholar
  3. 3.
    Amarasinghe PM, Katti KS, Katti DR. Nature of organic fluid-montmorillonite interactions: an FTIR spectroscopic study. J Colloid Interface Sci. 2009;337:97–105.CrossRefGoogle Scholar
  4. 4.
    Bellucci F, Camino G, Frache A, Saffa A. Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab. 2007;92:425–36.CrossRefGoogle Scholar
  5. 5.
    Bonczek JL, Harris W, Nkedi-Kizza P. Monolayer to bilayer transitional arrangements of hexadecyltrimethylammonium cations on Na-montmorillonite. Clays Clay Miner. 2002;50:11–7.CrossRefGoogle Scholar
  6. 6.
    Bromberg L, Straut CM, Centrone A, Wilusz E, Hatton TA. Montmorillonite functionalized with pralidoxime as a material for chemical protection against organophosphorous compounds. ACS Appl Mater Interfaces. 2011;3:1479–84.CrossRefGoogle Scholar
  7. 7.
    Bu H, Yuan P, Liu H, Liu D, Zhou X. Thermal decomposition of long-chain fatty acids and its derivative in the presence of montmorillonite. J Therm Anal Calorim. 2017;128:1661–9.CrossRefGoogle Scholar
  8. 8.
    Cai X, Tan S, Liao M, Wu T, Liu R, Yu B. Thermal stability and long-acting antibacterial activity of phosphonium montmorillonites. J Cent South Univ Technol. 2010;17:485–91.CrossRefGoogle Scholar
  9. 9.
    Campos LMP, Boaro LC, Santos TMR, Santos VJ, Grecco-Romano R, Santos MJ, Parra DF. Polymerization shrinkage evaluation in experimental dental composite filled with montmorillonite nanoparticles. J Therm Anal Calorim. 2018;131:771–4.CrossRefGoogle Scholar
  10. 10.
    Carrasco F, Perez-Maqueda LA, Santana OO, Maspoch ML. Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid)/montmorillonite nanocomposites driven by random scission. Polym Degrad Stab. 2014;101:52–9.CrossRefGoogle Scholar
  11. 11.
    Chen D, Chen J, Luan X, Ji H, Xia Z. Characterization of anion-cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem Eng J. 2011;171:1150–8.CrossRefGoogle Scholar
  12. 12.
    Chen D, Zhu JX, Yuan P, Yang SJ, Chen TH, He HP. Preparation and characterization of anion-cation surfactants modified montmorillonite. J Therm Anal Calorim. 2008;94:841–8.CrossRefGoogle Scholar
  13. 13.
    Chen DM, Chen J, Wang XM, Luan XL, Ji HP, Xu F. Adsorption of methylene blue from aqueous solution by anionic surfactant modified montmorillonite. Adv Mater Res. 2011;178:29–34.CrossRefGoogle Scholar
  14. 14.
    Chen HH, Thirumavalavan M, Ma YJ, Lee JF. The influence of structural and processing parameters of modifiers on the interlayer structure of modified montmorillonite. RSC Adv. 2015;5:83217–24.CrossRefGoogle Scholar
  15. 15.
    Davis RD, Gilman JW, Sutto TW, Callahan JH, Trulove PC, De Long H. Improved thermal stability of organically modified layered silicates. Clays Clay Miner. 2004;52:171–9.CrossRefGoogle Scholar
  16. 16.
    de Paiva LB, Morales AR, Valenzuela Diaz FR. Organoclays: properties, preparation and applications. Appl Clay Sci. 2008;42:8–24.CrossRefGoogle Scholar
  17. 17.
    Fitaroni LB, de Lima JA, Cruz SA, Waldman WR. Thermal stability of polypropylene-montmorillonite clay nanocomposites: limitation of the thermogravimetric analysis. Polym Degrad Stab. 2015;111:102–8.CrossRefGoogle Scholar
  18. 18.
    He HP, Ding Z, Zhu JX, Yuan P, Xi YF, Yang D, Frost RL. Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner. 2005;53:287–93.CrossRefGoogle Scholar
  19. 19.
    Katti KS, Sikdar D, Katti DR, Ghosh P, Verma D. Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: experiments and modeling. Polymer. 2006;47:403–14.CrossRefGoogle Scholar
  20. 20.
    Leite IF, Soares APS, Carvalho LH, Raposo CMO, Malta OML, Silva SML. Characterization of pristine and purified organobentonites. J Therm Anal Calorim. 2010;100:563–9.CrossRefGoogle Scholar
  21. 21.
    Li J, Liu Y, Shi J, Wang Z, Hu L, Yang X, Wang C. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR. Thermochim Acta. 2008;467:20–9.CrossRefGoogle Scholar
  22. 22.
    Lin KJ, Jeng US, Lin KF. Adsorption and intercalation processes of ionic surfactants on montmorillonite associated with their ionic charge. Mater Chem Phys. 2011;131:120–6.CrossRefGoogle Scholar
  23. 23.
    Liu H, Yuan P, Liu D, Bu H, Song H, Qin Z, He H. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals. Appl Clay Sci. 2018;153:205–16.CrossRefGoogle Scholar
  24. 24.
    Liu H, Yuan P, Qin Z, Liu D, Tan D, Zhu J, He H. Thermal degradation of organic matter in the interlayer clay-organic complex: a TG-FTIR study on a montmorillonite/12-aminolauric acid system. Appl Clay Sci. 2013;80–81:398–406.CrossRefGoogle Scholar
  25. 25.
    Madhoushi M, Chavooshi A, Ashori A, Ansell MP, Shakeri A. Properties of wood plastic composite panels made from waste sanding dusts and nanoclay. J Compos Mater. 2014;48:1661–9.CrossRefGoogle Scholar
  26. 26.
    Mao H, Li B, Li X, Yue L, Liu Z, Ma W. Novel one-step synthesis route to ordered mesoporous silica-pillared clay using cationic-anionic mixed-gallery templates. Ind Eng Chem Res. 2010;49:583–91.CrossRefGoogle Scholar
  27. 27.
    Mat’ko I, Sausa O, Cechova K, Jesenak K. Study of water in Ca-montmorillonite by thermal analysis and positron annihilation lifetime spectroscopy. J Therm Anal Calorim. 2018;133:247–54.CrossRefGoogle Scholar
  28. 28.
    Mittal V. Polymer layered silicate nanocomposites: a review. Materials. 2009;2:992–1057.CrossRefGoogle Scholar
  29. 29.
    Puffr R, Spatova JL, Brozek J. Clay mineral/polyamide nanocomposites obtained by in situ polymerization or melt intercalation. Appl Clay Sci. 2013;83–84:294–9.CrossRefGoogle Scholar
  30. 30.
    Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.CrossRefGoogle Scholar
  31. 31.
    Rutherford DW, Chiou CT. Effect of water saturation in soil organic matter on the partition of organic compounds. Environ Sci Technol. 1992;26:965–70.CrossRefGoogle Scholar
  32. 32.
    Sarkar B, Megharaj M, Xi Y, Naidu R. Structural characterisation of Arquad (R) 2HT-75 organobentonites: surface charge characteristics and environmental application. J Hazard Mater. 2011;195:155–61.CrossRefGoogle Scholar
  33. 33.
    Shimizu KI, Higuchi T, Takasugi E, Hatamachi T, Kodamab T, Satsuma A. Characterization of Lewis acidity of cation-exchanged montmorillonite K-10 clay as effective heterogeneous catalyst for acetylation of alcohol. J Mol Catal A Chem. 2008;284:89–96.CrossRefGoogle Scholar
  34. 34.
    Wang J, Zheng X, Hao W, Xu N, Pan X. Synthesis of hyper-branched quaternary ammonium salt and its application into montmorillonite. Powder Technol. 2012;221:80–9.CrossRefGoogle Scholar
  35. 35.
    Wang Z, Lv P, Hu Y, Hu K. Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol. J Anal Appl Pyrolysis. 2009;86:207–14.CrossRefGoogle Scholar
  36. 36.
    Wu LM, Liao LB, Lv GC. Influence of interlayer cations on organic intercalation of montmorillonite. J Colloid Interface Sci. 2015;454:1–7.CrossRefGoogle Scholar
  37. 37.
    Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13:2979–90.CrossRefGoogle Scholar
  38. 38.
    Xu Y, Peng H, Wang X, Su S. Comparative study of different polymerically-modified clays on curing reaction and thermal properties of epoxy resin. Thermochim Acta. 2011;516:13–8.CrossRefGoogle Scholar
  39. 39.
    Zawrah MF, Khattab RM, Saad EM, Gado RA. Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochim Acta A. 2014;122:616–23.CrossRefGoogle Scholar
  40. 40.
    Zhang Z, Liao L, Xia Z. Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Appl Clay Sci. 2010;50:576–81.CrossRefGoogle Scholar
  41. 41.
    Zhang Z, Zhang J, Liao L, Xia Z. Synergistic effect of cationic and anionic surfactants for the modification of Ca-montmorillonite. Mater Res Bull. 2013;48:1811–6.CrossRefGoogle Scholar
  42. 42.
    Zheng J, Li J, Hao H, Yao K. Influence of charge density and chain length on the interaction between organic anion and montmorillonite. J Wuhan Univ Technol. 2013;28:6–11.CrossRefGoogle Scholar
  43. 43.
    Zhuang G, Zhang Z, Guo J, Liao L, Zhao J. A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Appl Clay Sci. 2015;104:18–26.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyBeijing Forestry UniversityBeijingChina

Personalised recommendations