Advertisement

Influence of inherent alkali metal chlorides on pyrolysis mechanism of a lignin model dimer based on DFT study

  • Xiao-yan Jiang
  • Qiang Lu
  • Bin Hu
  • Deng-yu Chen
  • Ji Liu
  • Chang-qing Dong
Article
  • 31 Downloads

Abstract

In order to understand the catalytic effects of inherent inorganic elements in biomass on the pyrolysis mechanism of lignin, density functional theory with a Gaussian method of M06-2X and basic set of 6-31 + G(d,p) was employed to simulate the pyrolysis pathways of a β-O-4 type lignin dimer model compound (1-methoxy-2-(4-methoxyphenethoxy)benzene) catalyzed by NaCl and KCl which are major inorganic constituents of biomass at microscale level. The calculation results indicate that cations (Na+ and K+) in alkali metal chlorides are facile to combine with the oxygen-containing functional groups in the lignin dimer model compound. Both cations increase the Cβ−O bond length and shorten the Cα–Cβ bond length, which will further affect their bond dissociation energies. In the initial pyrolysis process of the lignin dimer model compound, NaCl and KCl can promote the Cβ–O homolytic reaction and concerted decomposition reaction, while restrain the Cα–Cβ homolytic reaction. Therefore, the lignin dimer model compound decomposes mainly through the concerted decomposition and Cβ–O homolytic mechanisms under NaCl and KCl catalytic pyrolysis conditions, producing 1-methoxy-4-vinylbenzene, 1-ethyl-4-methoxybenzene, 2-methoxyphenol, catechol and 2-hydroxybenzaldehyde, among which NaCl and KCl have inhibitory effect on 2-hydroxybenzaldehyde, but have promoting effect on the other pyrolytic products.

Keywords

Lignin Alkali metal chloride Catalytic pyrolysis mechanism Model dimer Density functional theory (DFT) 

Notes

Acknowledgements

The authors thank the National Natural Science Foundation of China (51576064, 51821004), Beijing Nova Program (Z171100001117064), Beijing Natural Science Foundation (3172030), Grants from Fok Ying Tung Education Foundation (161051), and Fundamental Research Funds for the Central Universities (2016YQ05 and 2018ZD08) for financial support.

References

  1. 1.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110:3552–99.CrossRefGoogle Scholar
  2. 2.
    Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34:29–41.CrossRefGoogle Scholar
  3. 3.
    Dong CQ, Zhang ZF, Lu Q, Yang YP. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers Manag. 2012;57:49–59.CrossRefGoogle Scholar
  4. 4.
    Azadi P, Inderwildi OR, Farnood R, King DA. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev. 2013;21:506–23.CrossRefGoogle Scholar
  5. 5.
    Zhang ZB, Lu Q, Ye XN, Xiao LP, Dong CQ, Liu YQ. Selective production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass: comparison of K3PO4, K2HPO4, and KH2PO4. BioResources. 2014;9:4050–62.Google Scholar
  6. 6.
    Zhang ZB, Lu Q, Ye XN, Li WT, Hu B, Dong CQ. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. Energy Convers Manag. 2015;106:1309–17.CrossRefGoogle Scholar
  7. 7.
    Shen D, Jin W, Hu J, Xiao R, Luo K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sustain Energy Rev. 2015;51:761–74.CrossRefGoogle Scholar
  8. 8.
    Elder T. A computational study of pyrolysis reactions of lignin model compounds. Holzforschung. 2010;64:435–40.CrossRefGoogle Scholar
  9. 9.
    Elder T, Beste A. Density functional theory study of the concerted pyrolysis mechanism for lignin models. Energy Fuels. 2014;28:5229–35.CrossRefGoogle Scholar
  10. 10.
    Beste A, Buchanan AC. Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the beta-O-4 linkage in lignin. Chem Phys Lett. 2012;550:19–24.CrossRefGoogle Scholar
  11. 11.
    Huang J, He C. Pyrolysis mechanism of α-O-4 linkage lignin dimer: a theoretical study. J Anal Appl Pyrolysis. 2015;113:655–64.CrossRefGoogle Scholar
  12. 12.
    Huang J, Liu C, Wu D, Tong H, Ren L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound. J Anal Appl Pyrolysis. 2014;109:98–108.CrossRefGoogle Scholar
  13. 13.
    Huang J, He C, Pan G, Tong H. A theoretical research on pyrolysis reactions mechanism of coumarone-contained lignin model compound. Comput Theor Chem. 2016;1091:92–8.CrossRefGoogle Scholar
  14. 14.
    Jiang XY, Lu Q, Ye XN, Hu B, Dong CQ. Experimental and theoretical studies on the pyrolysis mechanism of β-1-type lignin dimer model compound. BioResources. 2016;11:6232–43.Google Scholar
  15. 15.
    Zhang JJ, Jiang XY, Ye XN, Chen L, Lu Q, Wang XH, Dong CQ. Pyrolysis mechanism of a β-O-4 type lignin dimer model compound. J Therm Anal Calorim. 2016;123:501–10.CrossRefGoogle Scholar
  16. 16.
    Lane DJ, van Eyk PJ, Ashman PJ, Kwong CW, de Nys R, Roberts DA, Cole AJ, Lewis DM. Release of Cl, S, P, K, and Na during thermal conversion of algal biomass. Energy Fuels. 2015;29:2542–54.CrossRefGoogle Scholar
  17. 17.
    Le Brech Y, Ghislain T, Leclerc S, Bouroukba M, Delmotte L, Brosse N, Snape C, Chaimbault P, Dufour A. Effect of potassium on the mechanisms of biomass pyrolysis studied using complementary analytical techniques. Chemsuschem. 2016;9:863–72.CrossRefGoogle Scholar
  18. 18.
    Jensen PA, Frandsen FJ, Dam-Johansen K, Sander B. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy Fuels. 2000;14:1280–5.CrossRefGoogle Scholar
  19. 19.
    Zhao HB, Song Q, Wu XY, Yao Q. Study on the transformation of inherent potassium during the fast-pyrolysis process of rice straw. Energy Fuels. 2015;29:6404–11.CrossRefGoogle Scholar
  20. 20.
    Wang Y, Wu H, Sárossy Z, Dong C, Glarborg P. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass. Fuel. 2017;197:422–32.CrossRefGoogle Scholar
  21. 21.
    Fahmi R, Bridgwater AV, Darvell LI, Jones JM, Yates N, Thain S, Donnison IS. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel. 2007;86:1560–9.CrossRefGoogle Scholar
  22. 22.
    Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 2008;87:1230–40.CrossRefGoogle Scholar
  23. 23.
    Di Blasi C, Galgano A, Branca C. Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. Ind Eng Chem Res. 2009;48:3359–69.CrossRefGoogle Scholar
  24. 24.
    Di Blasi C, Galgano A, Branca C. Analysis of the physical and chemical mechanisms of potassium catalysis in the decomposition reactions of wood. Ind Eng Chem Res. 2011;50:3864–73.CrossRefGoogle Scholar
  25. 25.
    Jakab E, Faix O, Till F, Székely T. The effect of cations on the thermal decomposition of lignins. J Anal Appl Pyrolysis. 1993;25:185–94.CrossRefGoogle Scholar
  26. 26.
    Eom IY, Kim JY, Kim TS, Lee SM, Choi D, Choi IG, Choi JW. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour Technol. 2012;104:687–94.CrossRefGoogle Scholar
  27. 27.
    Hwang H, Oh S, Cho TS, Choi IG, Choi JW. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products. Bioresour Technol. 2013;150:359–66.CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, revision B.01. Wallingford: Gaussian, Inc.; 2010.Google Scholar
  29. 29.
    Jarvis MW, Daily JW, Carstensen HH, Dean AM, Sharma S, Dayton DC, Robichaud DJ, Nimlos MR. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether. J Phys Chem A. 2011;115:428–38.CrossRefGoogle Scholar
  30. 30.
    Mahadevan R, Adhikari S, Shakya R, Wang K, Dayton D, Lehrich M, Taylor SE. Effect of alkali and alkaline earth metals on in situ catalytic fast pyrolysis of lignocellulosic biomass: a microreactor study. Energy Fuels. 2016;30:3045–56.CrossRefGoogle Scholar
  31. 31.
    Kleen M, Gellerstedt G. Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrolysis. 1995;35:15–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory for Biomass Power Generation EquipmentNorth China Electric Power UniversityBeijingChina
  2. 2.Materials Science and Engineering CollegeNanjing Forestry UniversityNanjingChina

Personalised recommendations