Advertisement

Effects of Ag addition on phase transitions, microstructures and solder/copper interfaces of Sn99.1−xCu0.9Agx alloys

  • L. S. Silva
  • J. S. Souza
  • R. A. G. Silva
Article
  • 18 Downloads

Abstract

In this work, the effects of Ag addition on phase transitions, microstructure and solder/copper interfaces of Sn99.1−xCu0.9Agx alloys were studied using differential scanning calorimetry, X-ray diffractometry, electron scanning microscopy and energy-dispersive X-ray spectroscopy. The results showed that the addition of Ag to the Sn99.1Cu0.9 alloy changes the thermal behavior of the melting and solidification points of studied alloys. The presence of silver also induced the formation of the Ag3Sn phase and decreased the amount of the Cu6Sn5 compound.

Keywords

Ag addition Sn-based alloys Phase transformations 

Notes

Acknowledgements

The authors thank FAPESP (Proc. 2012/50570-5), CNPq and CAPES (Finance code 001) for financial support, and César C. S. Silva and Samuel R. P. de Paula for technical support.

References

  1. 1.
    Yao P, Li X, Liang X, Yu B, Jin F, Li Y. A study on interfacial phase evolution during Cu/Sn/Cu soldering with a micro interconnected height. Mater Charact. 2017;131:49–63.CrossRefGoogle Scholar
  2. 2.
    Dutta Chowdhury N, Ghosh KS. Calorimetric studies of Ag–Sn–Cu dental amalgam alloy powders and their amalgams. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6438-6.CrossRefGoogle Scholar
  3. 3.
    Xian JW, Belyakov SA, Ollivier M, Nogita K, Yasuda H, Gourlay CM. Cu6Sn5 crystal growth mechanisms during solidification of electronic interconnections. Acta Mater. 2017;126:540–51.CrossRefGoogle Scholar
  4. 4.
    Tang Y, Luo SM, Huang WF, Pan YC, Li GY. Effects of Mn nanoparticles on tensile properties of low-Ag Sn–0.3Ag–0.7Cu–xMn solder alloys and joints. J Alloys Compd. 2017;719:365–75.CrossRefGoogle Scholar
  5. 5.
    Shang H, Ma ZL, Belyakov SA, Gourlay CM. Grain refinement of electronic solders: the potential of combining solute with nucleant particles. J Alloys Compd. 2017.  https://doi.org/10.1016/j.jallcom.2017.04.268.CrossRefGoogle Scholar
  6. 6.
    Khodabakhshi F, Sayyadi R, Shahamat Javid N. Lead free Sn–Ag–Cu solders reinforced by Ni-coated graphene nanosheets prepared by mechanical alloying: microstructural evolution and mechanical durability. Mater Sci Eng A. 2017.  https://doi.org/10.1016/j.msea.2017.07.024.CrossRefGoogle Scholar
  7. 7.
    Ma ZL, Gourlay CM. Nucleation, grain orientations, and microstructure of Sn–3Ag–0.5Cu soldered on cobalt substrates. J Alloys Compd. 2017.  https://doi.org/10.1016/j.jallcom.2017.02.243.CrossRefGoogle Scholar
  8. 8.
    Yang M, Ji H, Wang S, Ko Y, Lee C, Wu J, Li M. Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. J Alloys Compd. 2016.  https://doi.org/10.1016/j.jallcom.2016.03.177.CrossRefGoogle Scholar
  9. 9.
    Yang M, Ko Y, Bang J, Kim T, Lee C, Li M. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate. Mater Charact. 2017.  https://doi.org/10.1016/j.matchar.2017.01.004.CrossRefGoogle Scholar
  10. 10.
    Kima KS, Huha SH, Suganumab K. Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J Alloys Compd. 2003;352:226–36.CrossRefGoogle Scholar
  11. 11.
    Fima P, Gazda A. Thermal analysis of selected Sn–Ag–Cu alloys. J Therm Anal Calorim. 2013;112:731–7.CrossRefGoogle Scholar
  12. 12.
    Kraft W, Petzow G, Aldinger F. Beitrag zur Konstitution kupferreicher Dentalamalgame. Z Metallkd. 1980;71:699–703.Google Scholar
  13. 13.
    Nomura Y, Minamoto S, Nomoto S. Simulations of solidification in Sn–3Ag–0.5Cu alloys by the multi-phase-field method. ISIJ Int. 2010;50(12):1920–4.CrossRefGoogle Scholar
  14. 14.
    Balzar D, Popa NC. Analyzing microstructure by Rietveld refinement. J Rigaku. 2005;22(1):16.Google Scholar
  15. 15.
    Coelho AA, Evans J, Evans I, Kern A, Parsons S. The TOPAS symbolic computation system. Powder Diffr. 2011;26(S1):22.CrossRefGoogle Scholar
  16. 16.
    Brian H. Toby, R factors in Rietveld analysis: How good is good enough? Powder Diffr. 2006;21(1):67.CrossRefGoogle Scholar
  17. 17.
    Jette ER, Foote F. Precision determination of lattice constants. J Chem Phys. 1935;3:605–16.CrossRefGoogle Scholar
  18. 18.
    Roennebro E, Yin J, Kitano A, Wada M, Sakai T. Comparative studies of mechanical and electrochemical lithiation of intermetallic nanocomposite alloys for anode materials in Li-ion batteries. Solid State Ionics. 2005;176:2749–57.CrossRefGoogle Scholar
  19. 19.
    Kattner UR. Phase diagrams for lead-free solder alloys. J Miner Met Mater Soc. 2002;54:45–51.CrossRefGoogle Scholar
  20. 20.
    Li M, Du Z, Guo C, Li C. Thermodynamic optimization of the Cu–Sn and Cu–Nb–Sn systems. J Alloys Compd. 2009;477:104–17.CrossRefGoogle Scholar
  21. 21.
    Burgess S, Li X, Houand J. High spatial resolution energy dispersive X-ray spectrometry in the SEM and the detection of light elements including lithium. Microsc Anal. 2013;27:S8–13.Google Scholar
  22. 22.
    Lee LM, Mohamad AA. Interfacial reaction of Sn–Ag–Cu lead-free solder alloy on Cu: a review. Adv Mater Sci Eng. 2013.  https://doi.org/10.1155/2013/123697.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Departamento de Química, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo-UNIFESPDiademaBrazil

Personalised recommendations