Synthesis of (La0.8Y0.2)PO4: Sm3+, Eu3+, Na+ and kinetics mechanism study with Z(α) master plots method for thermal process of its precursor

  • Yinglong Wang
  • Jiahao Wen
  • Tianman Wang
  • Xiaolin Wu
  • Chenchen Cao
  • Liu Yang
  • Sen LiaoEmail author
  • Yingheng HuangEmail author


Because luminescence can be enhanced by energy transfer from Sm3+ to Eu3+ ions, Eu3+, Sm3+-codoped phosphors have attracted much attention recently. In addition, Na+ ions can enhance the emission of Eu3+ in some Eu3+-doped phosphors. In order to obtain a red phosphor that can be efficiently excited by near-ultraviolet light, a series of triple-metal ions-codoped phosphors, (La0.8Y0.2)PO4: Sm3+, Eu3+, Na+, were obtained by high-temperature solid-state method. The products were characterized by XRD, SEM, PLE&PL and TG/DTG. The thermal decomposition process of the precursor was studied by non-isothermal method. Then, the kinetics of the thermal decomposition reaction process and the formation mechanism of the phosphor during calcination were obtained with Z(α) master plots method. The results demonstrate that Na+-doping effect on R (the intensity ratio of 5D0 → 7F2 to 5D0 → 7F1) and PL intensity (591 nm) is exactly opposite, of which the former is a minor negative effect, while the latter is a major positive effect. Furthermore, the results indicate that the thermal decomposition of the precursor is a single-step kinetic process, and the most probable mechanism function is g(α) = [(1−α)^(−1/3)−1]^2, which belongs to the mechanism of three-dimensional diffusion. The optimal sample is (La0.8Y0.2)PO4: 0.012Sm3+, 0.03Eu3+, 0.036Na+, and its PL intensity (591 nm) is as high as 1.84 times of that without Na+, indicating the optimal sample is a promising red-emitting phosphor for WLEDs.


Phosphor Inorganic compounds Optical materials Kinetics Thermal decomposition 



This research is supported by the National Natural Science Foundation of China (Grant No. 21661006) and the Students Experimental Skills and Innovation Ability Training Fund Project of Guangxi University (No. 201610593172 and No. 201710593183).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang T, Liu BT, Xu XH, Zhou DC, Qiu JB, Yu X. Energy interaction between Sm3+ and Eu3+ in Ca2Ge7O16 phosphor. Sci Adv Mater. 2017;9:654–60.CrossRefGoogle Scholar
  2. 2.
    Wu LW, Bai YX, Wu L, Yi H, Kong YF, Zhang Y, Xu JJ. Sm3+ and Eu3+ codoped SrBi2B2O7: a red-emitting phosphor with improved thermal stability. RSC Adv. 2017;7:1146–53.CrossRefGoogle Scholar
  3. 3.
    Stojadinovic S, Vasilic R. Orange-red photoluminescence of Nb2O5: Eu3+, Sm3+ coatings formed by plasma electrolytic oxidation of niobium. J Alloys Compd. 2016;685:881–9.CrossRefGoogle Scholar
  4. 4.
    Xia SY, Guan AX, Chen PC, Wang GF, Geng Y, Zhou LY. Sol-gel method for preparing a novel red-emitting phosphor YVO4:Sm3+, Eu3+ with ideal red color emission. Superlattices Microstruct. 2016;97:319–26.CrossRefGoogle Scholar
  5. 5.
    Ye ML, Zhou GJ, Zhou LQ, Lu D, Li Y, Xiong X, Yang KZ, Chen MH, Pan YX, Wu P. Luminescent properties and energy transfer process of Sm3+-Eu3+ co-doped MY2(MoO4)4 (M = Ca, Sr and Ba) red-emitting phosphors. Solid State Sci. 2016;59:44–51.CrossRefGoogle Scholar
  6. 6.
    Bi WB, Meng QY, Sun WJ. Luminescent properties and energy transfer mechanism of NaGd(MoO4)2: Sm3+, Eu3+ phosphors. Ceram Int. 2016;42:14086–93.CrossRefGoogle Scholar
  7. 7.
    Ren YD, Liu YH, Yang R. A series of color tunable yellow-orange-red-emitting SrWO4:RE (Sm3+, Eu3+-Sm3+) phosphor for near ultraviolet and blue light-based warm white light emitting diodes. Superlattices Microstruct. 2016;91:138–47.CrossRefGoogle Scholar
  8. 8.
    Gao Y, Xia Y, Huang YH, Long QW, Zhu CZ, Huang JM, Huang XS, Liao S. Sm3+, Eu3+ Co-doped La0.8Y0.2PO4: a novel and potential red-emitting phosphor for uv-based white light-emitting diodes. Sci Adv Mater. 2016;8:1093–100.CrossRefGoogle Scholar
  9. 9.
    Li F, Xie HD, Xi HH, Wang XC. Sol-gel preparation and luminescent properties of red-emitting phosphor Sr-Ba-Mo-W-O-(Sm3+, Eu3+). Luminescence. 2016;31:217–20.CrossRefGoogle Scholar
  10. 10.
    Liu T, Meng QY, Sun WJ. Luminescence properties of NaY(WO4)2: Sm3+, Eu3+ phosphors prepared by molten salt method. J Lumin. 2016;170:219–25.CrossRefGoogle Scholar
  11. 11.
    Han CL, Luo L, He JQ, Wang JX, Zhang W. Synthesis and luminescence properties of ZnMoO4:Eu3+, M+(M+ = Li+, Na+ and K+) phosphors. J Mater Sci Mater Electron. 2017;28:4409–13.CrossRefGoogle Scholar
  12. 12.
    Zhang NM, Zheng JM, Gao JH, Wu YJ, Zhang RY, Li T, Guo CF. DFT calculation, electric and luminescent property of titanate solid state electrolytes based red emitting phosphor A2La2Ti3O10:Eu3+ (A = Na, K). Dyes Pigments. 2017;136:601–11.CrossRefGoogle Scholar
  13. 13.
    Xu T, Ding N, Yang XJ, Liu Q, Wang LX, Zhang L, Zhang QT. Influence of charge compensators Li+/Na+/K+ on luminescence properties of Sr2CeO4:Eu3+. J Mater Sci Mater Electron. 2016;27:10207–12.CrossRefGoogle Scholar
  14. 14.
    Long QW, Gao Y, Huang YH, Liao S, Song BL, Wu WW. The dual charge compensation effect of Na+ ions on the luminescence behavior of red phosphor NaMgPO4: Eu3+. Mater Lett. 2015;160:436–9.CrossRefGoogle Scholar
  15. 15.
    Long JQ, Luo ZR, Wang TM, Pan LF, Long QW, Liao S, Huang YH, Zhang HX. Enhanced photoluminescence and energy transfer in the novel red emitting phosphors SrZn2(PO4)2:Eu3+, Tb3+, Li+. J Mater Sci Mater Electron. 2017;28:657–60.CrossRefGoogle Scholar
  16. 16.
    Gao Y, Long QW, Nong R, Wang TM, Zhang HX, Huang YH, Liao S. Strain induced enhancement of Eu3+ emission in red phosphor NaMgPO4:Eu3+, Al3+. J Electron Mater. 2017;46:911–6.CrossRefGoogle Scholar
  17. 17.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  18. 18.
    Long QW, Xia Y, Liao S, Li Y, Wu WW, Huang YH. Facile synthesis of hydrotalcite and its thermal decomposition kinetics mechanism study with masterplots method. Thermochim Acta. 2014;579:50–5.CrossRefGoogle Scholar
  19. 19.
    Xia Y, Huang YH, Li Y, Liao S, Long QW, Liang JQ. LaPO4: Ce, Tb, Yb phosphor—synthesis and kinetics study for thermal process of precursor by Vyazovkin, OFW, KAS, Starink and Mastplosts methods. J Therm Anal Calorim. 2015;120:1635–43.CrossRefGoogle Scholar
  20. 20.
    Huang YH, Xia Y, Li Y, Liao S, Long QW, Liang JQ, Cai JJ. Synthesis of a new phosphor (LaPO4:Ce, Li, Mn) and kinetics study for thermal process of its precursor. Adv Powder Technol. 2015;26:861–7.CrossRefGoogle Scholar
  21. 21.
    Saikia P, Allou NB, Borah A, Goswamee RL. Iso-conversional kinetics study on thermal degradation of Ni-Al layered double hydroxide synthesized by ‘soft chemical’ sol-gel method. Mater Chem Phys. 2017;186:52–60.CrossRefGoogle Scholar
  22. 22.
    Sadeghi M, Yekta S, Ghaedi H, Babanezhad E. MnO2 NPs-AgX zeolite composite as adsorbent for removal of strontium-90 (90Sr) from water samples: Kinetics and thermodynamic reactions study. Mater Chem Phys. 2017;197:113–22.CrossRefGoogle Scholar
  23. 23.
    Chen PY, Lian HY, Shih YF, Chen-Wei SM, Jeng RJ. Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater Chem Phys. 2017;196:249–55.CrossRefGoogle Scholar
  24. 24.
    Sharma J, Sukriti, Anand P, Pruthi V, Chaddha AS, Bhatia J, Kaith BS. RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: kinetics and equilibrium studies. Mater Chem Phys. 2017;196:270–83.CrossRefGoogle Scholar
  25. 25.
    Kameda T, Shinmyou T, Yoshioka T. Kinetics and equilibrium studies on the uptake of Nd3+ by Zn–Al layered double hydroxide intercalated with triethylenetetramine-hexaacetic acid. Mater Chem Phys. 2017;191:96–8.CrossRefGoogle Scholar
  26. 26.
    Motta MBJL, Adorno AT, Santos CMA, Silva RAG. Kinetics of bainite precipitation in the Cu69.3Al18.8Mn10.3Ag1.6 alloy. Mater Chem Phys. 2017;188:125–30.CrossRefGoogle Scholar
  27. 27.
    Xu T, Jian ZY, Chang FG, Zhuo LC, Zhang T. Isothermal crystallization kinetics of Fe75Cr5P9B4C7 metallic glass with cost-effectiveness and desirable merits. J Therm Anal Calorim. 2018;133:1309–15.CrossRefGoogle Scholar
  28. 28.
    da Silva JEE, Alarcon RT, Gaglieri C, Magdalena AG, da Silva LC, Bannach G. New thermal study of polymerization and degradation kinetics of methylene diphenyl diisocyanate. J Therm Anal Calorim. 2018;133:1455–62.CrossRefGoogle Scholar
  29. 29.
    Gorbovskiy KG, Ryashko AI, Kazakov AI, Norov AM, Mikhaylichenko AI. The influence of water-soluble impurities on thermal dehydration kinetics of phosphogypsum in self-generated atmosphere. J Therm Anal Calorim. 2018;133:1549–62.CrossRefGoogle Scholar
  30. 30.
    Milakhin DS, Malin TV, Mansurov VG, Galitsyn YG, Zhuravlev KS. Chemical kinetics and thermodynamics of the AlN crystalline phase formation on sapphire substrate in ammonia MBE. J Therm Anal Calorim. 2018;133:1099–107.CrossRefGoogle Scholar
  31. 31.
    Prnova A, Plsko A, Valuchova J, Svancarek P, Klement R, Michalkova M, Galusek D. Crystallization kinetics of yttrium aluminate glasses. J Therm Anal Calorim. 2018;133:227–36.CrossRefGoogle Scholar
  32. 32.
    Varhegyi G, Wang L, Skreiberg O. Towards a meaningful non-isothermal kinetics for biomass materials and other complex organic samples. J Therm Anal Calorim. 2018;133:703–12.CrossRefGoogle Scholar
  33. 33.
    Zhang J, Xue BB, Rao GN, Chen LP, Chen WH. Thermal decomposition characteristic and kinetics of DINA. J Therm Anal Calorim. 2018;133:727–35.CrossRefGoogle Scholar
  34. 34.
    Kim Y, Ambekar A, Yoh JJ. Toward understanding the aging effect of energetic materials via advanced isoconversional decomposition kinetics. J Therm Anal Calorim. 2018;133:737–44.CrossRefGoogle Scholar
  35. 35.
    Li GP, Ni ZC, Liu YZ, Xia M, Luo YJ. Thermal performance and decomposition kinetics of RDX/AP/SiO2 intermolecular explosive. J Therm Anal Calorim. 2018;132:1969–78.CrossRefGoogle Scholar
  36. 36.
    Chen ZP, Chai Q, Liao S, Chen X, He Y, Li Y, Wu WW, Li B. Non-isothermal kinetics study: IV. Comparative methods to evaluate Ea for thermal decomposition of KZn2(PO4)(HPO4) synthesized by a simple route. Ind Eng Chem Res. 2012;51:8985–91.CrossRefGoogle Scholar
  37. 37.
    Pérez-Maqueda L, Criado J. The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim. 2000;60:909–15.CrossRefGoogle Scholar
  38. 38.
    Jiang HY, Wang JG, Wu SQ, Wang BS, Wang ZZ. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina
  2. 2.School of Resources, Environment and MaterialsGuangxi UniversityNanningChina

Personalised recommendations