Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1987–1999 | Cite as

Structural, thermal decomposition and luminescent studies on gel grown crystals of poly[tetraaquadinicotinatostrontium(II)] containing ‘χ’-shaped hydrophobic channels

  • Drisya R. 
  • Soumyamol U. S. 
  • Satheesh Chandran P. R. 
  • Sudarsanakumar M. R. 
  • Prathapachandra Kurup M. R. 


Single crystals of the polymeric title complex tetraaquadinicotinatostrontium (SPYC) were successfully grown by a simple and efficient method—the gel encapsulation technique. Sodium metasilicate was used as the gel medium for this purpose. The crystal structure of the complex indicates that it belongs to triclinic system with space group \(P\overline{1}\). The packing diagram of the complex shows uniformly arranged ‘χ’-shaped hydrophobic channels. The thermal decomposition of the crystals have been studied by thermogravimetric analysis at four different heating rates and kinetic parameters including apparent activation energy (Ea), and pre-exponential factor (log A) were calculated by Kissinger, Ozawa and Flynn–Wall–Ozawa methods. Analytical techniques including FT-IR, CHN, powder and single-crystal X-ray diffraction were also carried out to characterize the grown crystals. The solid-state luminescent properties of free ligand and complex were also investigated at room temperature.


Metal–organic frameworks Thermal analysis Non-isothermal kinetic studies Flynn–Wall–Ozawa method 



RD is thankful to the University of Kerala, Trivandrum, India, for the University Research Fellowship. We sincerely thank Dr. R. Rajeev, Head, Analytical and Spectroscopy Division, VSSC, Trivandrum, Kerala, for his help and valuable suggestions on thermal decomposition studies. We are also grateful to Dr. Shibu M. Eapen, SAIF, CUSAT, Kochi, India, for single-crystal X-ray diffraction measurements and Dr. A. Santhosh Kumar, School of Pure and Applied Physics, M. G University, Kottayam, India, for luminescent studies.


  1. 1.
    Zhang M, Bosch M, Gentle T III, Zhou H. Rational design of metal-organic frameworks with anticipated porosities and functionalities. Cryst Eng Commun. 2014;16:4069–83.CrossRefGoogle Scholar
  2. 2.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444.CrossRefGoogle Scholar
  3. 3.
    Rao CNR, Natarajan S, Vaidhyanathan R. Metal Carboxylates with Open architectures. Angew Chem Int Ed. 2004;43:1466–96.CrossRefGoogle Scholar
  4. 4.
    Kuppler RJ, Timmons DJ, Fang QR, Li JR, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou HC. Potential applications of metal-organic frameworks. Coord Chem Rev. 2009;253:3042–66.CrossRefGoogle Scholar
  5. 5.
    Kim J, Chen B, Reineke TM, Li H, Eddaoudi M, Moler DB, O′Keeffe M, Yaghi OM. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J Am Chem Soc. 2001;123:8239–47.CrossRefGoogle Scholar
  6. 6.
    Łyszczek R. Synthesis, structure, thermal and luminescent behavior of lanthanide-Pyridine-3,5-dicarboxylate frameworks series. Thermochim Acta. 2010;509:120–7.CrossRefGoogle Scholar
  7. 7.
    Łyszczek R, Mazur L. Polynuclear complexes constructed by lanthanides and pyridine-3,5-dicarboxylate ligand: structures, thermal and luminescent properties. Polyhedron. 2012;41:7–19.CrossRefGoogle Scholar
  8. 8.
    Zhao YH, Su ZM, Fu YM, Shao KZ, Li P, Wang Y, Hao XR, Zhu DX, Liu SD. Syntheses and characterizations of four metal coordination polymers constructed by the pyridine-3,5-dicarboxylate ligand. Polyhedron. 2008;27:583–92.CrossRefGoogle Scholar
  9. 9.
    Mathew V, Jacob S, Mahadevan CK, Abraham KE. A study of thermal, dielectric and magnetic properties of strontium malonate crystals. Phys B. 2012;407:222–6.CrossRefGoogle Scholar
  10. 10.
    Chen Y, She S, Gao Q, Gao D, Wang D, Li Y, Liu W, Li W. Synthesis, structures and properties of the first series of SrII-MII (M = Cu Co, Ni and Zn) coordination polymers based on pyridine-2,5-dicarboxylic acid. Cryst Eng Commun. 2014;16:1091–102.CrossRefGoogle Scholar
  11. 11.
    Liu GX, Ren XM, Xu H, Nishihara S, Huang RY. A 3D Gd–Ag coordination polymer constructed from pyridine-3,5-dicarboxylic acid: synthesis, crystal structure and magnetic properties. Inorg Chem Commun. 2009;12:895–7.CrossRefGoogle Scholar
  12. 12.
    Li D, Zhong GQ. Synthesis, crystal structure, and thermal decomposition of the cobalt(II) complex with 2-Picolinic Acid. Sci World J. 2014;641608:7.Google Scholar
  13. 13.
    Shi FN, Cunha-Silva L, Trindade T, Paz FAA, Rocha J. Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters. Cryst Growth Des. 2009;9:2098–109.CrossRefGoogle Scholar
  14. 14.
    Remya Nair M, Sudarsanakumar MR, Suma S, Prathapachandra Kurup MR. Crystal structure and characterization of a novel luminescent 2D metal-organic framework, poly[aquaitaconatocalcium(II)] possessing an open framework structure with hydrophobic channels. J Mol Struct. 2016;1105:316–21.CrossRefGoogle Scholar
  15. 15.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  16. 16.
    Sangeetha V, Gayathri K, Krishnan P, Sivakumar N, Kanagathara N, Anbalagan G. Growth, structural, crystallization, thermal decomposition and dielectric behavior of melaminium bis(hydrogen oxalate) single crystal. J Therm Anal Calorim. 2014;117:307–18.CrossRefGoogle Scholar
  17. 17.
    Aghabozorg H, Nemati A, Derikvand Z, Ghadermazi M, Daneshvar S. Poly[tetraaqua-l3-pyridine-3,5- dicarboxylato-strontium(II)]. Acta Cryst. 2008;E64:m376.Google Scholar
  18. 18.
    Dhanya VS, Sudarsanakumar MR, Suma S, Prathapachandra Kurup MR, Sithambaresan M, Sunalya Roy M. Spectral, thermal, structural, dielectric and microhardness studies of gel grown diaquasuccinatocadmium(II) hemihydrate. Spectrochim Acta Part A. 2012;93:295–9.CrossRefGoogle Scholar
  19. 19.
    BRUKER, APEX2, SAINT, XPREP, Bruker AXS Inc. Madison, Wisconsin, USA 2004.Google Scholar
  20. 20.
    Altormare A, Cascarano G, Giacovazzo G, Guagliardi G. Completion and refinement of crystal-structures with SIR92. J Appl Cryst. 1993;26:343–50.CrossRefGoogle Scholar
  21. 21.
    Sheldrick GM. SHELXL 97 Program for Crystal Structure Refinement. Gottingen: University of Gottingen; 1997.Google Scholar
  22. 22.
    Brandenburg K, DIAMOND Version 3.1f. Crystal Impact GbR, Bonn, 2008.Google Scholar
  23. 23.
    Akhbari K, Morsali A. Spectroscopic, thermal, fluorescence and structural studies of new Tl-I pyridine dicarboxylate complexes [Tl-2(py-2,5-dc)] and [T1(2)(py-3,5-dc)]. J Mol Struct. 2008;878:65–70.CrossRefGoogle Scholar
  24. 24.
    Prasanna S, Bijini BR, Rajendra Babu K, Eapen SM, Deepa M, Nair CMK. Growth and characterisation of a novel polymer of manganese(II) nicotinate single crystal. J Cryst Growth. 2011;333:36–9.CrossRefGoogle Scholar
  25. 25.
    Zang Q, Zhong G-Q, Wang M-L. A copper(II) complex with pyridine-2,6-dicarboxylic acid: synthesis, characterization, thermal decomposition, bioactivity and interactions with herring sperm DNA. Polyhedron. 2015;100:223–30.CrossRefGoogle Scholar
  26. 26.
    Herbert Roesky W, Andruh M. The interplay of coordinative, hydrogen bonding and π–π stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons. Coord Chem Rev. 2003;236:91–119.CrossRefGoogle Scholar
  27. 27.
    Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Cryst B. 2002;58(3-1):389–97.CrossRefGoogle Scholar
  28. 28.
    Sahu J, Aijaz A, Xu Q, Bharadwaj PK. A three-dimensional pillared-layer metal-organic framework: synthesis, structure and gas adsorption studies. Inorg Chim Acta. 2015;430:193–8.CrossRefGoogle Scholar
  29. 29.
    Deng M, Yang P, Liu X, Xia B, Chen Z, Ling Y, Weng L, Zhou Y, Sun J. End–end connection pattern of trinuclear-triangular copper cluster for construction of two metal-organic frameworks: syntheses, structures, magnetic and gas adsorption properties. Cryst Growth Des. 2015;15:1526–34.CrossRefGoogle Scholar
  30. 30.
    Świderski G, Kalinowska M, Rusinek I, Samsonowicz M, Rzączyńska Z, Lewandowski W. Spectroscopic (IR, Raman) and thermogravimetric studies of 3d-metal cinchomeronates and dinicotinates. J Therm Anal Calorim. 2016;126:1521–32.CrossRefGoogle Scholar
  31. 31.
    Boonchom B. Kinetic and thermodynamic studies of MgHPO4 3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.CrossRefGoogle Scholar
  32. 32.
    Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2011;107:1023–9.CrossRefGoogle Scholar
  33. 33.
    Kissinger H. Variation of peak temperature with heating rate in different thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.CrossRefGoogle Scholar
  34. 34.
    Blaine L, Kissinger H. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6.CrossRefGoogle Scholar
  35. 35.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  36. 36.
    Matečić Mušanić S, Fiamengo Houra I, Sućeska M. Applicability of non-isothermal DSC and Ozawa method for studying kinetics of double base propellant decomposition. Central Eur J Energ Mater. 2010;7(3):233–51.Google Scholar
  37. 37.
    Hamed MNH, Kamal R. The effect of particle size on the kinetics of thermal decomposition of Co(C2O4) 2H2O nanopowders under non-isothermal conditions. J Therm Anal Calorim. 2016;123:675–86.CrossRefGoogle Scholar
  38. 38.
    Lin W-C, Yu W-L, Liu S-H, Huang S-Y, Hou H-Y, Shu C-M. Thermal hazard analysis and combustion characteristics of four imidazolium nitrate ionic liquids. J Therm Anal Calorim. 2018;133:683–93.CrossRefGoogle Scholar
  39. 39.
    Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15.CrossRefGoogle Scholar
  40. 40.
    Uzun N, Çolak AT, Emen FM, Çılgı GK. The thermal and detailed kinetic analysis of dipicolinate complexes. J Therm Anal Calorim. 2016;124:1735–44.CrossRefGoogle Scholar
  41. 41.
    Balboul BAA, El-Roudi AM, Samir E, Othman AG. Non-isothermal studies of the decomposition course of lanthanum oxalate decahydrate. Thermochim Acta. 2002;387:109–14.CrossRefGoogle Scholar
  42. 42.
    Brown ME, Dollimore D. Galeway AK. In: Banford CH, Tipper CFH, editors. Reactions in solid state. Amsterdam: Elsevier; 1980.Google Scholar
  43. 43.
    Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113:1527–41.CrossRefGoogle Scholar
  44. 44.
    Sivakumar N, Kanagathara N, Gayathri K, Krishnan P, Anbalagan G. Synthesis, thermal decomposition and dielectric behavior of bis(thiourea)silver(I)nitrate. J Therm Anal Calorim. 2014;115:1295–301.CrossRefGoogle Scholar
  45. 45.
    Muraleedharan K, Kripa S. DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim. 2014;115:1969–78.CrossRefGoogle Scholar
  46. 46.
    John J, Sudha Devi R, Balachandran S, Dinesh Babu KV. Synthesis, spectral characterization and thermal analysis of rubrocurcumin and its analogues. J Therm Anal Calorim. 2017;130:2301–14.CrossRefGoogle Scholar
  47. 47.
    Liu G-X, Xu Y-Y, Ren X-M, Nishihara S, Huang R-Y. Self-assembly of 3-D 4d–4f coordination frameworks based on pyridine-3,5-dicarboxylic acid: syntheses, crystal structures and luminescence. Inorg Chim Acta. 2010;363:3727–32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Drisya R. 
    • 1
  • Soumyamol U. S. 
    • 1
  • Satheesh Chandran P. R. 
    • 1
  • Sudarsanakumar M. R. 
    • 1
  • Prathapachandra Kurup M. R. 
    • 2
  1. 1.Department of ChemistryMahatma Gandhi CollegeThiruvananthapuramIndia
  2. 2.Department of Chemistry, School of Physical SciencesCentral University of KeralaNileshwarIndia

Personalised recommendations