Skip to main content
Log in

Stöber silica’s microporosity

Insights from thermal analysis studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Substantial knowledge gap still exists in understanding Stöber silica’s confusing microporosity. In this work, we utilized simultaneous thermal analysis coupled with Fourier transform infrared spectroscopy to characterize Stöber silica samples prepared with various post-treatments including water or ethanol washing and drying at different temperatures. The results suggest that ammonia-catalyzed ethoxylation between ethanol and silanol groups can take place during drying, and the resulting ethoxyl groups along with Si-containing oligomers may contribute to serious micropore blocking. On the other hand, water washing is effective to hydrolyze and remove these pore-blocking materials and thus enable cleared micropores. Several interesting findings including the very sharp DSC peaks, high evolving temperature of ethanol, and pyrolysis of organic matters are linked to Stöber silica’s micropores. Our work has undoubtedly improved the mechanistic understanding of Stöber silica’s microporosity and will thus facilitate the practical optimization and application of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloids Interface Sci. 1968;26(1):62–9.

    Article  Google Scholar 

  2. Wong YJ, Zhu L, Teo WS, Tan YW, Yang Y, Wang C, et al. Revisiting the Stöber method: inhomogeneity in silica shells. J Am Chem Soc. 2011;133(30):11422–5.

    Article  CAS  PubMed  Google Scholar 

  3. Wang H, Yu M, Lin CK, Lin J. Core–shell structured SiO2@YVO4: Dy3+/Sm3+ phosphor particles: sol–gel preparation and characterization. J Colloids Interface Sci. 2006;300(1):176–82.

    Article  CAS  Google Scholar 

  4. Cho S-H, Park SY, Kim C, Choi P-P, Park J-K. Stabilization of monodispersed spherical silica particles and their alignment with reduced crack density. Colloids Surf A Physicochem Eng Asp. 2014;441:354–9.

    Article  CAS  Google Scholar 

  5. Diedrich T, Dybowska A, Schott J, Valsarni-Jones E, Oelkers EH. The dissolution rates of SiO2 nanoparticles as a function of particle size. Environ Sci Technol. 2012;46(9):4909–15.

    Article  CAS  PubMed  Google Scholar 

  6. Kim JM, Chang SM, Kong SM, Kim KS, Kim J, Kim WS. Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process. Ceram Int. 2009;35(3):1015–9.

    Article  CAS  Google Scholar 

  7. Mueller R, Kammler HK, Wegner K, Pratsinis SE. OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir. 2003;19(1):160–5.

    Article  CAS  Google Scholar 

  8. Bogush GH, Tracy MA, Zukoski CF. Preparation of monodisperse silica particles control of size and mass fraction. J Non-Cryst Solids. 1988;104:95–106.

    Article  CAS  Google Scholar 

  9. Giesche H. Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. J Eur Ceram Soc. 1994;14:189–204.

    Article  CAS  Google Scholar 

  10. Wang H-C, Wu C-Y, Chung C-C, Lai M-H, Chung T-W. Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology. Ind Eng Chem Res. 2006;45(24):8043–8.

    Article  CAS  Google Scholar 

  11. Hartlen KD, Athanasopoulos APT, Kitaev V. Facile preparation of highly monodisperse small silica spheres (15 to > 200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir. 2008;24(5):1714–20.

    Article  CAS  PubMed  Google Scholar 

  12. Yang M, Wu H, Wu H, Huang C, Weng W, Chen M, et al. Preparation and characterization of a highly dispersed and stable Ni catalyst with a microporous nanosilica support. RSC Adv. 2016;6(84):81237–44.

    Article  CAS  Google Scholar 

  13. Yu MH, Niu YT, Zhang J, Zhang HW, Yang YN, Taran E, et al. Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Res. 2016;9(2):291–305.

    Article  CAS  Google Scholar 

  14. Szekeres M, Toth J, Dekany I. Specific surface area of Stöber silica determined by various experimental methods. Langmuir. 2002;18(7):2678–85.

    Article  CAS  Google Scholar 

  15. Dekany I, Nemeth J, Szekeres M, Schoonheydt R. Surfacial, liquid sorption and monolayer-forming properties of hydrophilic and hydrophobic Stöber silica particles. Colloids Polym Sci. 2003;282(1):1–6.

    Article  CAS  Google Scholar 

  16. Howard A, Khdary N. Spray synthesis of monodisperse sub-micron spherical silica particles. Mater Lett. 2007;61(8–9):1951–4.

    Article  CAS  Google Scholar 

  17. Davis PJ, Deshpande R, Smith DM, Brinker CJ, Assink RA. Pore structure evolution in silica gel during aging/drying. IV. Varying pore fluid pH. J Non-Cryst Solids. 1994;167(3):295–306.

    Article  CAS  Google Scholar 

  18. Filipovic R, Obrenovic Z, Stijepovic I, Nikolic LM, Srdic VV. Synthesis of mesoporous silica particles with controlled pore structure. Ceram Int. 2009;35(8):3347–53.

    Article  CAS  Google Scholar 

  19. Li S, Wan Q, Qin Z, Fu Y, Gu Y. Unraveling the mystery of Stöber silica’s microporosity. Langmuir. 2016;32(36):9180–7.

    Article  CAS  PubMed  Google Scholar 

  20. Labrosse A, Burneau A. Characterization of porosity of ammonia catalysed alkoxysilane silica. J Non-Cryst Solids. 1997;221(2–3):107–24.

    Article  CAS  Google Scholar 

  21. Wan Q, Ramsey C, Baran G. Thermal pretreatment of silica composite filler materials. J Therm Anal Calorim. 2010;99(1):237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wells JD, Koopal LK, de Keizer A. Monodisperse, nonporous, spherical silica particles. Colloids Surf A. 2000;166:171–6.

    Article  CAS  Google Scholar 

  23. Wang YF. Nanogeochemistry: nanostructures, emergent properties and their control on geochemical reactions and mass transfers. Chem Geol. 2014;378:1–23.

    Article  CAS  Google Scholar 

  24. Li S, Wan Q, Qin Z, Fu Y, Gu Y. Understanding Stöber silica’s pore characteristics measured by gas adsorption. Langmuir. 2015;31(2):824–32.

    Article  CAS  PubMed  Google Scholar 

  25. Vanblaaderen A, Vangeest J, Vrij A. Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloids Interface Sci. 1992;154(2):481–501.

    Article  CAS  Google Scholar 

  26. Huang Y, Pemberton JE. Synthesis of uniform, spherical sub-100 nm silica particles using a conceptual modification of the classic LaMer model. Colloids Surf A. 2010;360(1–3):175–83.

    Article  CAS  Google Scholar 

  27. Stefaniak W, Goworek J, Bilinski B. Pore size analysis by nitrogen adsorption and thermal desorption. Colloids Surf A Physicochem Eng Asp. 2003;214(1–3):231–7.

    Article  CAS  Google Scholar 

  28. Ma Y, Wang J, Zhang Y. TG-FTIR study on pyrolysis of waste printing paper. J Therm Anal Calorim. 2017;129(2):1225–32.

    Article  CAS  Google Scholar 

  29. Macan J, Paljar K, Burmas B, Spehar G, Leskovac M, Gajovic A. Epoxy-matrix composites filled with surface-modified SiO2 nanoparticles. J Therm Anal Calorim. 2017;127(1):399–408.

    Article  CAS  Google Scholar 

  30. Catauro M, Naviglio D, Risoluti R, Ciprioti SV. Sol-gel synthesis and thermal behavior of bioactive ferrous citrate-silica hybrid materials. J Therm Anal Calorim. 2018;133(2):1085–92.

    Article  CAS  Google Scholar 

  31. Ossenkamp GC, Kemmitt T, Johnston JH. Toward functionalized surfaces through surface esterification of silica. Langmuir. 2002;18(15):5749–54.

    Article  CAS  Google Scholar 

  32. Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties. New York: Wiley; 1979.

    Google Scholar 

  33. Yariv S, Cross H. Geochemistry of colloid systems for earth scientists. Berlin: Springer; 1979.

    Book  Google Scholar 

  34. Ying JY, Benziger JB, Navrotsky A. Structural evolution of alkoxide silica-gels to glass-effect of catalyst pH. J Am Ceram Soc. 1993;76(10):2571–82.

    Article  CAS  Google Scholar 

  35. Mitropoulos AC. The Kelvin equation. J Colloids Interface Sci. 2008;317(2):643–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by the National Natural Science Foundation of China (41473064), the Chinese Academy of Sciences (“Hundred Talents Program”), the State Key Laboratory of Ore Deposit Geochemistry (SKLODG-ZY125-09) and the Doctoral Starting up Foundation of Guizhou Normal University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Wan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wan, Q., Qin, Z. et al. Stöber silica’s microporosity. J Therm Anal Calorim 136, 1895–1904 (2019). https://doi.org/10.1007/s10973-018-7850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7850-2

Keywords

Navigation