Skip to main content
Log in

The non-isothermal kinetics of zinc ferrite reduction with carbon monoxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to reduce zinc ferrite using carbon monoxide in the temperature range of 25–1000 °C using temperature-programmed reduction. The kinetic parameters were evaluated using the Friedman isoconversional method, and multi-step reaction models were determined by nonlinear regression methods. The reduction of zinc ferrite is a stepwise process according to the thermodynamic calculation and the variation of the activation energy Ea. Ea generally remained between 100 and 120 kJ mol−1 during the reduction process. The mechanism was determined based on an F-test of the fit quality. The corresponding kinetic parameters were obtained and employed to predict the isothermal reduction of zinc ferrite. The experimental data were found to be consistent with the predicted data, suggesting that the reduction can be satisfactorily described by the presented mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peng B, Peng N, Liu H, Xue K, Lin D-H. Comprehensive recovery of Fe, Zn, Ag and In from high iron-bearing zinc calcine. J Cent South Univ. 2017;24(5):1082–9. https://doi.org/10.1007/s11771-017-3511-z.

    Article  CAS  Google Scholar 

  2. Li K, An X, Park KH, Khraisheh M, Tang J. A critical review of CO2 photoconversion: catalysts and reactors. Catal Today. 2014;224:3–12. https://doi.org/10.1016/j.cattod.2013.12.006.

    Article  CAS  Google Scholar 

  3. Nordhei C, Mathisen K, Safonova O, van Beek W, Nicholson DG. Decomposition of carbon dioxide at 500 °C over reduced iron, cobalt, nickel, and zinc ferrites: a combined XANES−XRD study. J Phys Chem C. 2009;113(45):19568–77. https://doi.org/10.1021/jp9049473.

    Article  CAS  Google Scholar 

  4. Tabata M, Nishida Y, Kodama T, Mimori K, Yoshida T, Tamaura Y. CO2 decomposition with oxygen-deficient Mn(II) ferrite. J Mater Sci. 1993;28(4):971–4.

    Article  CAS  Google Scholar 

  5. Liang Y, Min X, Chai L, Wang M, Liyang W, Pan Q, et al. Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere. 2017;168:1142–51.

    Article  CAS  PubMed  Google Scholar 

  6. Lee JJ, Lin CI, Chen HK. Carbothermal reduction of zinc ferrite. Metall Mater Trans B Proc Metall Mater Proc Sci. 2001;32(6):1033–40. https://doi.org/10.1007/s11663-001-0092-9.

    Article  Google Scholar 

  7. Tong LF, Hayes P. Mechanisms of the reduction of zinc ferrites in H2/N2 gas mixtures. Miner Process Extr Metall Rev. 2006;28(2):127–57.

    Article  CAS  Google Scholar 

  8. Tong LF. Reduction mechanisms and behaviour of zinc ferrite—part 2: ZnFe2O4 solid solutions. Trans Inst Min Metall Sect C Miner Process Extr Metall. 2001;110:C123–32.

    Article  CAS  Google Scholar 

  9. Tong LF. Reduction mechanisms and behaviour of zinc ferrite—part 1: pure ZnFe2O4. Trans Inst Min Metall Sect C Miner Process Extr Metall. 2001;110:C14–24.

    Article  CAS  Google Scholar 

  10. Udechukwu MC, Downey B, Udenigwe CC. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chem. 2018;240:1227–32. https://doi.org/10.1016/j.foodchem.2017.08.063.

    Article  CAS  PubMed  Google Scholar 

  11. Nasiri Y, Panjepour M, Ahmadian M. The kinetics of hematite reduction and cementite formation with CH4–H2–Ar gas mixture. Int J Miner Process. 2016;153:17–28. https://doi.org/10.1016/j.minpro.2016.05.017.

    Article  CAS  Google Scholar 

  12. Kang HW, Chung WS, Murayama T. Effect of iron ore size on kinetics of gaseous reduction. ISIJ Int. 1998;38(2):109–15. https://doi.org/10.2355/isijinternational.38.109.

    Article  CAS  Google Scholar 

  13. Khedr MH. Isothermal reduction kinetics at 900–1100 °C of NiFe2O4 sintered at 1000–1200 °C. J Anal Appl Pyrol. 2005;73(1):123–9. https://doi.org/10.1016/j.jaap.2005.01.002.

    Article  CAS  Google Scholar 

  14. Davies M, Simnad M, Birchenall C. On the mechanism and kinetics of the scaling of iron. JOM. 1951;3(10):889–96.

    Article  CAS  Google Scholar 

  15. Li J, Li B, Han J, Cao Z, Wang J. A comparative study on the reduction mechanism of Fe2O3 under different heating methods. JOM. 2014;66(8):1529–36.

    Article  CAS  Google Scholar 

  16. Mac Rae DR. Kinetics and mechanism of the reduction of solid iron oxides in iron-carbon melts from 1200 to 1500 °C. JOM. 1965;17(12):1391–5.

    Article  CAS  Google Scholar 

  17. Drakshayani DN, Mallya RM. Reactivity with hydrogen of pure iron oxide and of iron oxides doped with oxides of Mn Co, Ni and Cu. J Therm Anal. 1991;37(5):891–906. https://doi.org/10.1007/BF01932787.

    Article  Google Scholar 

  18. Zhang Y, Li X, Pan L, Liang X, Li X. Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite. Hydrometallurgy. 2010;100(3–4):172–6.

    Article  CAS  Google Scholar 

  19. Kleshchev DG, Tolchev AV, Pervushin VY. Phase formation in the systems α(δ)–FeOOH–M(OH)2–H2O (M = Mn Co, Zn). Inorg Mater. 2004;40(3):264–9. https://doi.org/10.1023/b:inma.0000020525.17432.52.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  21. Galwey AK, Brown ME. Thermal decomposition of ionic solids: chemical properties and reactivities of ionic crystalline phases. Amsterdam: Elsevier; 1999.

    Google Scholar 

  22. Jankovic B, Adnadevic B, Mentus S. The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method. Thermochim Acta. 2007;456(1):48–55. https://doi.org/10.1016/j.tca.2007.01.033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Science Foundation of China (51574295) for financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liang, Y., Peng, N. et al. The non-isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim 136, 2157–2164 (2019). https://doi.org/10.1007/s10973-018-7841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7841-3

Keywords

Navigation