Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1681–1703 | Cite as

Synergistic effect of exfoliated graphene nanoplatelets and non-halogen flame retardants on flame retardancy and thermal properties of kenaf flour-PP nanocomposites

  • Christopher Igwe Idumah
  • Azman HassanEmail author
  • Serge Bourbigot
Article
  • 70 Downloads

Abstract

A series of quaternary hybrid kenaf (K) flour-PP nanocomposites, such as PP/KF/MAPP/GNP/MgOH (K-GNP-MgOH), PP/KF/MAPP/GNP/APP (K-GNP-APP) and PP/KF/MAPP/GNP/MgO (K-GNP-MgO) filled with exfoliated graphene nanoplatelets (GNP)-3 phr acting as adjuvant in combination with mineral flame retardants, 20 mass/% magnesium hydroxide (Mg (OH)2) and 20 mass/% magnesium oxide (MgO), and 20 mass/% intumescent ammonium polyphosphate (APP), respectively, were prepared through melt extrusion using co-rotating twin screw extruder. The resulting quaternary nanocomposites were characterized in terms of flame retardancy, thermomechanical, thermal conductivity, thermal behavior, heat deflection temperature (HDT), and mechanical, morphological and structural properties. Mass loss calorimeter data revealed a significant reduction of peak heat release rate, total heat release, effective heat of combustion, mass loss rate and delayed time to ignition due to GNP-MgOH, GNP-MgO and GNP-APP synergistic mechanism in hybrid nanocomposites, respectively. The effective thermal conductivities and HDT of quaternary nanocomposites were found to significantly increase. DSC results revealed enhanced crystallization temperatures with reduced degree of crystallinity, while melting points remained stable.

Keywords

Graphene Flame retardancy Thermal analysis Extrusion 

Notes

Acknowledgements

The authors wish to acknowledge the management of Universiti Teknologi Malaysia, Head of Research Group R2 Fire Unité Matériaux et Transformations (UMET) - CNRS UMR 8207 Ecole Nationale Supérieure de Chimie de Lille (ENSCL) Villeneuve d’Ascq Cedex, France, for providing facilities for the success of this research.

References

  1. 1.
    Idumah CI, Hassan A, Affam A. Review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng. 2015;31:149–77.CrossRefGoogle Scholar
  2. 2.
    Dittrich B, Wartig KA, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab. 2013;98:1495–505.CrossRefGoogle Scholar
  3. 3.
    Zhu F, Xu Y, Feng Q, et al. Thermal kinetics study and flammability evaluation of polyimide fiber material. J Therm Anal Calorim. 2018;131:2579.  https://doi.org/10.1007/s10973-017-6752-z.CrossRefGoogle Scholar
  4. 4.
    Chen X, Wang Y, Jiao C. Influence of TiO2 particles and APP on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2018;132:251.  https://doi.org/10.1007/s10973-017-6847-6.CrossRefGoogle Scholar
  5. 5.
    Sain M, Park SH, Suhara F, Law S. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polym Degrad Stab. 2004;83:363–7.CrossRefGoogle Scholar
  6. 6.
    Fu M, Qu B. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polym Degrad Stab. 2004;85:633–9.CrossRefGoogle Scholar
  7. 7.
    Xu Q, Jin C, Jiang Y. Compare the flammability of two extruded polystyrene foams with micro-scale combustion calorimeter and cone calorimeter tests. J Therm Anal Calorim. 2017;127:2359.  https://doi.org/10.1007/s10973-016-5754-6.CrossRefGoogle Scholar
  8. 8.
    Stark N, White R, Mueller S, Osswald T. Evaluation of various fire retardants for use in wood flour-polyethylene composites. Polym Degrad Stab. 2010;95:1903–10.CrossRefGoogle Scholar
  9. 9.
    Idumah C, Hassan A. Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev Chem Eng. 2015;32:115–48.Google Scholar
  10. 10.
    Garcia M, Hidalgo J, Garmendia J, Garcia-Jaca J. Wood-plastics composites with better fire retardancy and durability performance. Compos Part A. 2009;40:1772–6.CrossRefGoogle Scholar
  11. 11.
    Idumah CI, Hassan A. Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth Met. 2016;212:91–104.CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Hu Y, Song L, Wu J, Fang SL. Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite. Polym Adv Technol. 2008;19(8):960–6.CrossRefGoogle Scholar
  13. 13.
    Tang G, Deng D, Chen J, et al. The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites. J Therm Anal Calorim. 2017;130:763.  https://doi.org/10.1007/s10973-017-6425-y.CrossRefGoogle Scholar
  14. 14.
    Rybiński P, Anyszka R, Imiela M, et al. Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials. J Therm Anal Calorim. 2017;127:2383.  https://doi.org/10.1007/s10973-016-5841-8.CrossRefGoogle Scholar
  15. 15.
    Chao C, Gao M. Flame retardancy and thermal properties of octavinylsilsesquioxane/polycarbonate composites. J Therm Anal Calorim. 2017;128:1125.  https://doi.org/10.1007/s10973-016-6021-6.CrossRefGoogle Scholar
  16. 16.
    Kozlowski R, Wladyka-Przybylak M. Review. Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol. 2008;19:449–53.CrossRefGoogle Scholar
  17. 17.
    Durin-France A, Ferry L, Lopez Cuesta JM, Crespy A. Magnesium hydroxide/zinc borate/talc compositions as flame-retardants in EVA copolymer. Polym Int. 2000;49:1101–5.CrossRefGoogle Scholar
  18. 18.
    Focke WW, Molefe D, Labuschagne FJW, Ramjee S. The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders. J Mater Sci. 2009;44:6100–9.CrossRefGoogle Scholar
  19. 19.
    Blanco I, Cicala G, Latteri A, et al. Thermal characterization of a series of lignin-based polypropylene blends. J Therm Anal Calorim. 2017;127:147.  https://doi.org/10.1007/s10973-016-5596-2.CrossRefGoogle Scholar
  20. 20.
    Franchini E, Galy J, Gérard JF, Tabuani D, Medici A. Influence of POSS structure on the fire retardant properties of epoxy hybrid networks. Polym Degrad Stab. 2009;94:1728–36.CrossRefGoogle Scholar
  21. 21.
    Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polym Degrad Stab. 2009;94:1245–53.CrossRefGoogle Scholar
  22. 22.
    Gallo E, Schartel B, Acierno D, Cimino F, Russo P. Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Compos Part B. 2013;44:112–9.CrossRefGoogle Scholar
  23. 23.
    Gao F, Beyer G, Yuana Q. A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polymer Degrad Stab. 2005;89:559–64.CrossRefGoogle Scholar
  24. 24.
    Glodek TE, Boyd SE, McAninch IM, LaScala JJ. Properties and performance of fire resistant eco-composites using polyhedral oligomeric silsesquioxane (POSS) fire retardants. Compos Sci Technol. 2008;68:2994–3001.CrossRefGoogle Scholar
  25. 25.
    Hapuarachchi TD, Peijs T. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Part A. 2010;41:954–63.CrossRefGoogle Scholar
  26. 26.
    Huang G, Liang H, Wang Y, Wang X, Gao J, Fei Z. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly (vinyl alcohol). Mater Chem Phys. 2012;132:520–8.CrossRefGoogle Scholar
  27. 27.
    Haurie L, Fernández AI, Velasco JI, Chimenos JM, Lopez Cuesta JM, Espiell F. Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym Degrad Stab. 2006;91:989–94.CrossRefGoogle Scholar
  28. 28.
    Haurie L, Fernández AI, Velasco JI, Chimenos JM, Lopez Cuesta JM, Espiell F. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polym Degrad Stab. 2007;92:1082–7.CrossRefGoogle Scholar
  29. 29.
    Luca Motoc D, Ferrandiz Bou S, Balart R. Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composites. J Therm Anal Calorim. 2018;133:509.  https://doi.org/10.1007/s10973-018-7222-y.CrossRefGoogle Scholar
  30. 30.
    Sain M, Park SH, Suhara F, Law S. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polym Degrad Stab. 2004;83:363–7.CrossRefGoogle Scholar
  31. 31.
    Feng C, Zhang Y, Liang D, Liu S, Chi Z, Xu J. Flame retardancy and thermal degradation behaviors of polypropylene composites with novel intumescent flame retardant and manganese dioxide. J Anal Appl Pyrolysis. 2013;104:59–67.CrossRefGoogle Scholar
  32. 32.
    Chen X, Yu J, Guo S, Lu S, Luo Z, He M. Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. J Mater Sci. 2009;44:1324–32.CrossRefGoogle Scholar
  33. 33.
    Yen YY, Wang HT, Guo WJ. Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites. Polym Degrad Stab. 2012;97:863–9.CrossRefGoogle Scholar
  34. 34.
    Wang BB, Qian XD, Shi YQ, Yu B, Hong NN, Song L, Hu Y. Cyclodextrin microencapsulated ammonium polyphosphate: preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos Part B Eng. 2015;69:22–30.CrossRefGoogle Scholar
  35. 35.
    Huang G, Huading L, Wang Y, Wang X, Gao J, Fei Z. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly (vinyl alcohol). Mater Chem Phys. 2012;132:520–8.CrossRefGoogle Scholar
  36. 36.
    Tang Q, Wang B, Tang G, Shi Y, Qian X, Yu B, Song L, Hu Y. Preparation of microcapsulated ammonium polyphosphate, pentaerythritol with glycidyl methacrylate, butyl methacrylate and their synergistic flame- retardancy for ethylene vinyl acetate copolymer. Polym Adv Technol. 2014;25:73–82.CrossRefGoogle Scholar
  37. 37.
    Samyn F, Bourbigot S, Duquesne S, Delobel R. Effect of zinc borate on the thermal degradation of ammonium polyphosphate. Thermochim Acta. 2007;456:134–44.CrossRefGoogle Scholar
  38. 38.
    Su XQ, Yi YW, Tao J, Qi HQ, Li DY. Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym Degrad Stab. 2014;105:12–20.CrossRefGoogle Scholar
  39. 39.
    Despinasse MC, Schartel B. Aryl phosphate–aryl phosphate synergy in flame-retarded bisphenol a polycarbonate/acrylonitrile-butadiene-styrene. Thermochim Acta. 2013;563:51–61.CrossRefGoogle Scholar
  40. 40.
    Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.CrossRefGoogle Scholar
  41. 41.
    Lee C, Xiaoding W, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeo-chromocytoma derived PC12 Cells. ACS Nano. 2010;4:3181–6.CrossRefGoogle Scholar
  43. 43.
    Kuila T, Saswata B, Khanra P, Kim NH, Yop RK, Hee LJ. Characterization and properties of in situ emulsion polymerized poly (methyl methacrylate)/graphene nanocomposites. Compos Part A Appl Sci Manuf. 2011;42:1856–61.CrossRefGoogle Scholar
  44. 44.
    Kuila T, Saswata B, Mishra AK, Partha K, Hoon KN, Hee J. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym Test. 2012;31:31–8.CrossRefGoogle Scholar
  45. 45.
    Idumah C, Hassan A, Bourbigot S. Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J Anal Appl Pyrol. 2017;123:65–72.CrossRefGoogle Scholar
  46. 46.
    Huang G, Gao J, Wang X, Liang H, Ge C. How can graphene reduce the flammability of polymer nanocomposites? Mater Lett. 2012;66:187–9.CrossRefGoogle Scholar
  47. 47.
    Wang X, Song L, Yang H, Hu Y. Synergistic effect of graphene on anti dripping and fire resistance of intumescent flame retardant poly (butylene succinate) composites. Ind Eng Chem Res. 2011;50:5376–83.CrossRefGoogle Scholar
  48. 48.
    Ryu HJ, Mahapatra SS, Yadav SK, Cho JW. Synthesis of click-coupled graphene sheet with chitosan: effective exfoliation and enhanced properties of their nanocomposites. Eur Polym J. 2013;49:2627–34.CrossRefGoogle Scholar
  49. 49.
    Idumah C, Hassan A. Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev Chem Eng. 2016;32:223–64.Google Scholar
  50. 50.
    Shahil K, Balandin A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012;2:861–7.CrossRefGoogle Scholar
  51. 51.
    Schartel B, Braun U, Schwarz U, Reinemann S. Fire retardancy of polypropylene/flax blends. Polymer. 2003;44:6241–50.CrossRefGoogle Scholar
  52. 52.
    Duguay AJ, Nader J, Kizilitas A, Gardner DJ, Dagher HJ. Exfoliated graphite nanoplatelets-filled impact modified polypropylene composites: influence of particle diameter, filler loading, and coupling agent on mechanical properties. Appl Nanosci. 2014;4:279–91.CrossRefGoogle Scholar
  53. 53.
    Shi QF, Mou HY, Li QY, Wang JK, Guo WH. Influence of heat treatment on the heat distortion temperature of poly (lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci. 2012;123:2828.CrossRefGoogle Scholar
  54. 54.
    Yang HS, Wolcott MP, Kim HS, Kim HJ. Thermal properties of lignocellulosic filler-thermoplastic polymer biocomposites. J Thermal Anal Calorim. 2005;82:157–60.CrossRefGoogle Scholar
  55. 55.
    Kim HS, Choi SW, Lee BH, Kim S, Kim HJ, Cho CW, Cho D. Thermal properties of bio flour-filled polypropylene biocomposites with different pozzolan contents. J Thermal Anal Calorim. 2007;89:821–7.CrossRefGoogle Scholar
  56. 56.
    Hemmat M, Behbahani P, Arani A, et al. Thermal conductivity enhancement of SiO2–MWCNT (85:15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128:249.  https://doi.org/10.1007/s10973-016-5893-9.CrossRefGoogle Scholar
  57. 57.
    Idumah C, Hassan A. Recently emerging trends in thermal conductivity of polymer nanocomposites. Rev Chem Eng. 2016;32:413–57.Google Scholar
  58. 58.
    Samal S, Stuchlík M, Petrikova I. Thermal behavior of flax and jute reinforced in matrix acrylic composite. J Therm Anal Calorim. 2018;131:1035.  https://doi.org/10.1007/s10973-017-6662-0.CrossRefGoogle Scholar
  59. 59.
    Bubeck RA, Merrington A, Dumitrascu A, et al. Thermal analyses of poly (lactic acid) PLA and micro-ground paper blends. J Therm Anal Calorim. 2018;131:309.  https://doi.org/10.1007/s10973-017-6466-2.CrossRefGoogle Scholar
  60. 60.
    Ahmed L, Zhang B, Shen R, et al. Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test. J Therm Anal Calorim. 2018;132:1853.  https://doi.org/10.1007/s10973-018-7127-9.CrossRefGoogle Scholar
  61. 61.
    Agag T, Koga T, Takeichi T. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer. 2001;42:3399–408.CrossRefGoogle Scholar
  62. 62.
    Idumah C, Hassan A. Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J Polym Eng. 2016;36:877–89.CrossRefGoogle Scholar
  63. 63.
    Gu AJ, Chang FC. A novel preparation of polyimide/clay hybrid films with low coefficient of thermal expansion. J Appl Polym Sci. 2001;79:289–94.CrossRefGoogle Scholar
  64. 64.
    Asif AA, John B, Rao VL, Ninan KN. Surface morphology, thermomechanical and barrier properties of poly(ether sulfone)-toughened epoxy clay ternary nanocomposites. Polym Int. 2010;59:986–97.CrossRefGoogle Scholar
  65. 65.
    Kiba S, Suzuki N, Okawauchi Y, Yamauchi Y. Prototype of low thermal expansion materials: fabrication of mesoporous silica/polymer composites with densely filled polymer inside mesopore space. Chem Asian J. 2010;5:2100–5.CrossRefGoogle Scholar
  66. 66.
    Suzuki N, Kiba S, Kamachi Y, Miyamoto N, Yamauchi Y. Mesoporous silica a smart inorganic filler: preparation of robust silicone rubber with low thermal expansion property. J Mater Chem. 2011;21:5338–44.CrossRefGoogle Scholar
  67. 67.
    Suzuki N, Kiba S, Yamauchi Y. Fabrication of mesoporous silica KIT-6/polymer composite and its low thermal expansion property. Mater Lett. 2011;65:544–7.CrossRefGoogle Scholar
  68. 68.
    Suzuki N, Kiba S, Yamauchi Y. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property. Phys Chem Chem Phys. 2011;13:4957–62.CrossRefGoogle Scholar
  69. 69.
    Idumah C, Hassan A. Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites. Rev Chem Eng. 2016;32:305–61.Google Scholar
  70. 70.
    Rapacz-Kmita A, Gajek M, Dudek M, et al. Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. J Therm Anal Calorim. 2017;127:389.  https://doi.org/10.1007/s10973-016-5771-5.CrossRefGoogle Scholar
  71. 71.
    Rivière P, Nypelö T, Rojas OJ, et al. Space-resolved thermal properties of thermoplastics reinforced with carbon nanotubes. J Therm Anal Calorim. 2017;127:2059.  https://doi.org/10.1007/s10973-016-5751-9.CrossRefGoogle Scholar
  72. 72.
    Hemmat M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018;131:1437.  https://doi.org/10.1007/s10973-017-6680-.CrossRefGoogle Scholar
  73. 73.
    Wei CY, Srivastava D, Cho KJ. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett. 2002;2:647–50.CrossRefGoogle Scholar
  74. 74.
    Idumah C, Hassan A. Hibiscus cannabinus fiber/PP based nano-biocomposites reinforced with graphene nanoplatelets. J Nat Fibers. 2017;14:691–706.CrossRefGoogle Scholar
  75. 75.
    Kim H, Park JW, Lee JH, Jang SW, Kim HJ, Choi Y, Choy JH, Yang JH. Clay-organic intumescent hybrid system for the synergetic flammability of polymer nanocomposites. J Therm Anal Calorim. 2018;132:2009.  https://doi.org/10.1007/s10973-018-7140-z.CrossRefGoogle Scholar
  76. 76.
    Weil ED. Synergists, adjuvants and antagonists in flame-retardant systems. In: Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. Boca Raton: CRC Press; 2000. p. 115–45.Google Scholar
  77. 77.
    Focke WW, Molefe D, Labuschagne FJW, Ramjee S. The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders. J Mater Sci. 2009;44:6100–9.CrossRefGoogle Scholar
  78. 78.
    Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;3:902–7.CrossRefGoogle Scholar
  79. 79.
    Min C, Demei Y, Cao J, Wang G, Feng L. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon. 2013;55:116–25.CrossRefGoogle Scholar
  80. 80.
    Teng CC, Chen-Chi M, Chu-Hua L, Shin-Yi Y, Shie-Heng L, Min-Chien H, et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon. 2011;49:5107–16.CrossRefGoogle Scholar
  81. 81.
    Jiang XD, Lawrence T. Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates. J Power Sources. 2012;218:297–306.CrossRefGoogle Scholar
  82. 82.
    Xia Y, Cui W, Zhang H, Zou Y, Xiang C, Chu H, Qiu S, Xu F, Sun L. Preparation and thermal performance of n octadecane/expanded graphite composite phase-change materials for thermal management. J Therm Anal Calorim. 2018;131:81.  https://doi.org/10.1007/s10973-017-6556-1.CrossRefGoogle Scholar
  83. 83.
    Hemmat M, Kiannejad M, Alirezaie A. Thermal conductivity of a hybrid nanofluid. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-017-6836-9.CrossRefGoogle Scholar
  84. 84.
    Majka TM, Cokot M, Pielichowski K. Studies on the thermal properties and flammability of polyamide 6 nanocomposites surface-modified via layer-by-layer deposition of chitosan and montmorillonite. J Therm Anal Calorim. 2018;131:405.  https://doi.org/10.1007/s10973-017-6849-4.CrossRefGoogle Scholar
  85. 85.
    Iqbal SS, Inam F, Bahadar A, et al. Ablation, thermal stability/transport/phase transition study of carbon nanofiber-reinforced elastomeric nanocomposites. J Therm Anal Calorim. 2018;131:2637.  https://doi.org/10.1007/s10973-017-6831-1.CrossRefGoogle Scholar
  86. 86.
    Szilágyi IM, Kállay-Menyhárd A, Šulcová P, et al. Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). J Therm Anal Calorim. 2018;133:1.  https://doi.org/10.1007/s10973-018-7407-4.CrossRefGoogle Scholar
  87. 87.
    Jiang Y, Pan Y, Guan J, et al. Experimental studies on thermal analysis and explosion characteristics of superfine polystyrene powders. J Therm Anal Calorim. 2018;131:1471.  https://doi.org/10.1007/s10973-017-6656-y.CrossRefGoogle Scholar
  88. 88.
    Tarani E, Terzopoulou Z, Bikiaris N, et al. Thermal conductivity and degradation behavior of HDPE/graphene nanocomposites. J Therm Anal Calorim. 2017;129:1715.  https://doi.org/10.1007/s10973-017-6342-0.CrossRefGoogle Scholar
  89. 89.
    Wu K, Wang Z, Liang H. Microencapsulation of ammonium polyphosphate: preparation, characterization, and its flame retardance in polypropylene. Polym Compos. 2008;29:854–60.CrossRefGoogle Scholar
  90. 90.
    Wu K, Wang Z, Hu Y. Microencapsulated ammonium polyphosphate with urea melamine formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:1118–25.CrossRefGoogle Scholar
  91. 91.
    Wu K, Song L, Wang Z, Hu Y. Microencapsulation of ammonium polyphosphate with PVA melamine formaldehyde resin and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:1914–21.CrossRefGoogle Scholar
  92. 92.
    Biswal M, Mohanty S, Nayak SK. Thermal stability and flammability of banana-fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci. 2012;125(SUPPL. 2):E432–43.CrossRefGoogle Scholar
  93. 93.
    Ramanathan T, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3:327–31.CrossRefGoogle Scholar
  94. 94.
    Dasari A, Yu ZZ, Mai YW, Liu S. Flame retardancy of highly filled polyamide6/clay nanocomposites. Nanotechnology. 2007;18:445–602.CrossRefGoogle Scholar
  95. 95.
    Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol Mater Eng. 2004;289:499–511.CrossRefGoogle Scholar
  96. 96.
    Qui L, Xie R, Ding P, Qu B. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA. Compos Struct. 2003;62:391–5.CrossRefGoogle Scholar
  97. 97.
    Inorganic IR Grating Spectra, Sadlter Research Laboratories; 1972.Google Scholar
  98. 98.
    Pouchert CJ. The Aldrich library of infrared spectra, Edition III; 1981, 1850.Google Scholar
  99. 99.
    Hummel DO. Atlas of polymer and plastics analysis, vol 2. 2nd ed. Weinheim: Wiley-VCH; 1988.Google Scholar
  100. 100.
    Kalaitzidou K, Fukushima H, Drzal L. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon. 2007;45:1446–52.CrossRefGoogle Scholar
  101. 101.
    Huang Wu, Drzal Lawrence T. Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite. Mater Chem Phys. 2014;146:26–36.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Christopher Igwe Idumah
    • 1
    • 2
  • Azman Hassan
    • 1
    Email author
  • Serge Bourbigot
    • 3
  1. 1.Enhanced Polymer Research Group, Faculty of Chemical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Ebonyi State UniversityAbakalikiNigeria
  3. 3.Head of Research Group R2Fire, Unité Matériaux et Transformations (UMET) - CNRS UMR 8207Ecole Nationale Supérieure de Chimie de Lille (ENSCL)Villeneuve d’Ascq CedexFrance

Personalised recommendations