Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2375–2382 | Cite as

Study on the dissolution behaviors of CL-20/TNT co-crystal in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)

  • Qian Jia
  • Kai-chang Kou
  • Jiao-Qiang Zhang
  • Shi-jie Zhang
  • Yun-long Xu


2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/2,4,6-trinitrotoluene (TNT) co-crystal in 1:1 molar ratio was prepared by a solvent evaporation method, and the structural characterizations of CL-20/TNT co-crystal were systematically investigated by powder X-ray diffraction, Raman and differential scanning calorimeter. The dissolution behaviors of CL-20/TNT co-crystal in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) were investigated by a DC08-1 Calvet microcalorimeter at 298.15 K, showing that the dissolution processes were all exothermic. The heat effects (Q) of CL-20/TNT co-crystal dissolved in DMF and DMSO both increased with the increase of the amount of co-crystal. Empirical formulas for the calculation of the enthalpies of dissolution (\(\Delta _{\text{diss}} H\)), relative apparent molar enthalpies (\(\Delta _{\text{diss}} H_{\text{apparent}}\)), relative partial molar enthalpies (\(\Delta _{\text{diss}} H_{\text{partial}}\)) were obtained from the experimental data of CL-20/TNT co-crystal dissolved in DMF and DMSO. It was found that the values of \(\Delta _{\text{diss}} H\), \(\Delta _{\text{diss}} H_{\text{apparent}}\) and \(\Delta _{\text{diss}} H_{\text{partial}}\) were affected by the molality of co-crystal (b). The kinetic equations describing the dissolution of CL-20/TNT co-crystal in DMF and DMSO at 298.15 K are \({\text{d}}\alpha / {\text{d}}t = 10^{ - 2.39} \left( {1 - \alpha } \right)^{0.89}\) and \({\text{d}}\alpha / {\text{d}}t = 10^{ - 2.47} \left( {1 - \alpha } \right)^{0.62}\), respectively.


CL-20/TNT co-crystal Microcalorimeter Dissolution behaviors Kinetics Thermodynamic 



This work is supported by the National Natural Science Foundation of China (2167030786).

Supplementary material

10973_2018_7832_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)


  1. 1.
    Yang Z, Ding L, Wu P, Liu Y, Nie F, Huang F. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity. Chem Eng J. 2015;268:60–6.CrossRefGoogle Scholar
  2. 2.
    Bolton O, Simke LR, Pagoria PF, Matzger AJ. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des. 2012;12(9):4311–4.CrossRefGoogle Scholar
  3. 3.
    Gong F, Zhang J, Ding L, Yang Z, Liu X. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability. Chem Eng J. 2017;309:140–50.CrossRefGoogle Scholar
  4. 4.
    Wang Y, Song X, Song D, Liang L, An C, Wang J. Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. J Hazard Mater. 2016;312:73–83.CrossRefGoogle Scholar
  5. 5.
    Wei X, Zhang A, Ma Y, Xue X, Zhou J, Zhu Y, Zhang C. Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formations. CrystEngComm. 2015;17(47):9037–47.CrossRefGoogle Scholar
  6. 6.
    Xu H, Duan X, Li H, Pei C. A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv. 2015;5(116):95764–70.CrossRefGoogle Scholar
  7. 7.
    Xu Z, Cheng G, Yang H, Ju X, Yin P, Zhang J, Shreeve J. A facile and versatile synthesis of energetic furazan-functionalized 5-nitroimino-1,2,4-triazoles. Angew Chem Int Ed. 2017;56(21):5877–81.CrossRefGoogle Scholar
  8. 8.
    He G, Yang Z, Zhou X, Zhang J, Pan L, Liu S. Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos Sci Technol. 2016;131:22–31.CrossRefGoogle Scholar
  9. 9.
    Qiu H, Stepanov V, Di Stasio AR, Chou T, Lee WY. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity. J Hazard Mater. 2011;185(1):489–93.CrossRefGoogle Scholar
  10. 10.
    Chen T, Jiang W, Du P, Liu J, Hao G, Gao H, Xiao L, Ke X. Facile preparation of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/glycidylazide polymer energetic nanocomposites with enhanced thermolysis activity and low impact sensitivity. Rsc Adv. 2017;7(10):5957–65.CrossRefGoogle Scholar
  11. 11.
    Li Y, Shu Y, Wang B, Zhang S, Zhai L. Synthesis, structure and properties of neutral energetic materials based on N-functionalization of 3,6-dinitropyrazolo[4,3-c]pyrazole. Rsc Adv. 2016;6(88):84760–8.CrossRefGoogle Scholar
  12. 12.
    Huang H, Shi Y, Yang J, Li B. Compatibility study of dihydroxylammmonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) with some energetic materials and inert materials. J Energy Mater. 2015;33(1):66–72.CrossRefGoogle Scholar
  13. 13.
    Wu J, Zhang J, Li T, Li Z, Zhang T. A novel cocrystal explosive NTO/TZTN with good comprehensive properties. Rsc Adv. 2015;5(36):28354–9.CrossRefGoogle Scholar
  14. 14.
    Chen P, Zhang L, Zhu S, Cheng G, Li N. Investigation of TNB/NNAP cocrystal synthesis, molecular interaction and formation process. J Mol Struct. 2017;1128:629–35.CrossRefGoogle Scholar
  15. 15.
    Zhou J, Shi L, Zhang C, Li H, Chen M, Chen W. Theoretical analysis of the formation driving force and decreased sensitivity for CL-20 cocrystals. J Mol Struct. 2016;1116:93–101.CrossRefGoogle Scholar
  16. 16.
    Guo C, Zhang H, Wang X, Xu J, Liu Y, Liu X, Huang H, Sun J. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct. 2013;1048(11):267–73.CrossRefGoogle Scholar
  17. 17.
    Gao H, Zhang S, Ren F, Liu F, Gou R, Ding X. Theoretical insight into the co-crystal explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1,1-diamino-2,2-dinitroethylene (FOX-7). Comput Mater Sci. 2015;107:33–41.CrossRefGoogle Scholar
  18. 18.
    Liu K, Zhang G, Luan J, Chen Z, Su P, Shu Y. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct. 2016;1110:91–6.CrossRefGoogle Scholar
  19. 19.
    Qiu H, Patel RB, Damavarapu RS, Stepanov V. Nanoscale 2CL-20·HMX high explosive cocrystal synthesized by bead milling. CrystEngComm. 2015;17(22):4080–3.CrossRefGoogle Scholar
  20. 20.
    Hang G, Yu W, Wang T, Wang J, Li Z. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation. J Mol Model. 2017;23(10):281.CrossRefGoogle Scholar
  21. 21.
    Hang G, Yu W, Wang T, Wang J, Li Z. Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. J Mol Struct. 2017;1141:577–83.CrossRefGoogle Scholar
  22. 22.
    Guo D, An Q, Zybin SV, Goddard WA III, Huang F, Tang B. The co-crystal of TNT/CL-20 leads to decreased sensitivity toward thermal decomposition from first principles based reactive molecular dynamics. J Mater Chem A. 2015;3(10):5409–19.CrossRefGoogle Scholar
  23. 23.
    Chen P, Zhang L, Zhu S, Cheng G. Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of CL-20/TEX cocrystal explosive. Can J Chem. 2015;93(6):632–8.CrossRefGoogle Scholar
  24. 24.
    Tian X, Peng H, Li Y, Yang C, Zhou Z, Wang Y. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater. Sens Actuators B Chem. 2017;243:1002–9.CrossRefGoogle Scholar
  25. 25.
    Wang J, Muto M, Yatabe R, Tahara Y, Onodera T, Tanaka M, Okochi M, Toko K. Highly selective rational design of peptide-based surface plasmon resonance sensor for direct determination of 2,4,6-trinitrotoluene (TNT) explosive. Sens Actuators B Chem. 2018;264:279–84.CrossRefGoogle Scholar
  26. 26.
    Bolton O, Matzger AJ. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed. 2011;50(38):8960–3.CrossRefGoogle Scholar
  27. 27.
    Cui C, Ren H, Jiao Q. Solubility measurement and correlation for ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane in different alkanes/aromatic hydrocarbon + ethyl acetate binary solvents at temperatures of between 283.15 and 323.15 K. J Chem Eng Data. 2018;63(8):3097–106.CrossRefGoogle Scholar
  28. 28.
    Lv P, Tong Y, Wang H, Dang L, Sun C, Pang S. Measurement and correlation of solubility of ε-CL-20 in solvent mixtures of (chloroform + ethyl acetate) and (m-xylene + ethyl acetate) at temperatures from 278.15 K to 313.15 K. J Mol Liq. 2017;231:192–201.CrossRefGoogle Scholar
  29. 29.
    Liu L, Li H, Chen D, Zhou X, Huang Q, Yang H. Solubility of 1,1-diamino-2,2-dinitroethylene in different pure solvents and binary mixtures (dimethyl sulfoxide t water) and (N,N-dimethylformamide t water) at different temperatures. Fluid Phase Equlib. 2018;460:95–104.CrossRefGoogle Scholar
  30. 30.
    Li N, Zhao F, Xuan C, Gao H, Xiao L. Thermochemical properties of 2,6-diamino-3,5-dinitropyrazine-1-oxide in dimethyl sulfoxide and N-methyl pyrrolidone. J Therm Anal Calorim. 2017;127(3):2511–6.CrossRefGoogle Scholar
  31. 31.
    Li N, Zhao F, Xuan C, An T, Yang Y, Gao H, Xiao L, Hu R. Thermochemical properties of 2-oxo-1,3,5-trinitro-1,3,5-triazacyclohexane in dimethyl sulfoxide. J Therm Anal Calorim. 2018;131(3):3047–52.CrossRefGoogle Scholar
  32. 32.
    Kilday MV. The enthalpy of solution of srm-1655 (KCl) in H2O. J Res Natl Bur Stand. 1980;85(6):467–81.CrossRefGoogle Scholar
  33. 33.
    Doblas D, Rosenthal M, Burghammer M, Chernyshov D, Spitzer D, Ivanov DA. Smart energetic nanosized co-crystals: exploring fast structure formation and decomposition. Cryst Growth Des. 2015;16(1):432–9.CrossRefGoogle Scholar
  34. 34.
    Niu H, Chen S, Jin S, Li L, Shu Q. Dissolution thermodynamics of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate in water at T = (298.15, 303.15, 308.15 and 313.15 K). J Therm Anal Calorim. 2017;128(3):1875–80.CrossRefGoogle Scholar
  35. 35.
    Xiao L, Luo Y, Zhao F, Gao H, Li N, Chen X, Wang Y, Hu R. Dissolution properties of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane in N-methyl pyrrolidone. J Therm Anal Calorim. 2016;123(1):659–63.CrossRefGoogle Scholar
  36. 36.
    Li N, Zhao F, Xuan C, Gao H, Xiao L, Qu W, Hu R. Dissolution properties of potassium salt of bis(dinitromethyl)difurazanyl ether in N-methyl pyrrolidone and water. J Therm Anal Calorim. 2016;124(3):1519–24.CrossRefGoogle Scholar
  37. 37.
    Li Z, Zhao W, Pu X. Study on the oscillation dissolved behavior of oxysophocarpine in water. Thermochim Acta. 2012;537:76–9.CrossRefGoogle Scholar
  38. 38.
    Xiao L, Zhao F, Xing X, Huang H, Zhou Z, An T, Pei Q, Tan Y. Dissolution properties of ammonium dipicrylamide in dimethyl sulfoxide and N-methyl pyrrolidone. Thermochim Acta. 2012;546:138–42.CrossRefGoogle Scholar
  39. 39.
    Xing X, Xue L, Zhao F, Gao H, Hu R. Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta. 2009;491(1–2):35–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Natural and Applied SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations