Advertisement

Thermal analysis, crystal structure and magnetic properties of Cr-doped Ni–Mn–Sn high-temperature magnetic shape memory alloys

  • Medika Kök
  • S. Burcu Durğun
  • Ecem Özen
Article
  • 2 Downloads

Abstract

The superiority of NiMnSn alloy on NiMnGa alloy is far ahead in term of some physical characteristics, and therefore, the development of this alloy group is very important. In this work, Ni50Mn45−xSn5Crx magnetic shape memory alloys were produced for x = 0, 4, 6, 10 and 12. Thermal analysis was performed on produced alloys in a wide range (200–1000 °C) by using differential scanning calorimetry, thermogravimetric and differential thermal analysis. According to the thermal analysis results, the austenite ↔ martensite transformation temperatures of the NiMnSn alloy decreased with increasing chromium content. Furthermore, the increase in the chromium ratio caused single-phase transformation due to the multiple phase transformation that was observed in the NiMnSn alloy. In addition, the crystal structure and microstructure analyses of the alloys were determined by using X-ray diffraction and scanning electron microscopy–energy-dispersive X-ray spectroscopy. In all cases, martensite and gamma phase were encountered and the gamma phase ratio was found to be increased by chromium addition. The magnetization characteristics were studied by using physical properties measurement systems device, and it was found that the alloys have a considerably small response to magnetic flux.

Keywords

Thermal analysis NiMnSn alloy Chromium addition Martensite phase Gamma phase 

Notes

Acknowledgements

This work has been supported by the Management Unit of the Scientific Research Projects of Firat University (FUBAP) (Project No. FF.17.08). This article is derived from the Master thesis of Şeyda Burcu DURĞUN.

References

  1. 1.
    Zhou Z, Yang L, Li R, Li J, Hu Q, Li J. Martensite transformation, mechanical properties and shape memory effects of Ni–Mn–In–Mg shape memory alloys. Prog Nat Sci Mater. 2018;28(1):60–5.CrossRefGoogle Scholar
  2. 2.
    Yang S, Liu Y, Wang C, Lu Y, Wang J, Shi Z, et al. Microstructure and functional properties of two-phase Ni–Mn–Fe–In shape memory alloys with small transformation hysteresis width. J Alloys Compd. 2015;619:498–504.CrossRefGoogle Scholar
  3. 3.
    Feng Y, Sui J, Gao Z, Dong G, Cai W. Microstructure, phase transitions and mechanical properties of Ni50Mn34In16−y coy alloys. J Alloys Compd. 2009;476(1–2):935–9.CrossRefGoogle Scholar
  4. 4.
    Gao L, Cai W, Liu A, Zhao L. Martensitic transformation and mechanical properties of polycrystalline Ni50Mn29Ga21−xGdx ferromagnetic shape memory alloys. J Alloys Compd. 2006;425(1–2):314–7.CrossRefGoogle Scholar
  5. 5.
    Dagdelen F, Aydogdu Y. Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7635-7.CrossRefGoogle Scholar
  6. 6.
    Maji C. Properties of magnetic shape memory alloys in martensitic phase. Curr Sci (00113891). 2017;112(7):1390–01.CrossRefGoogle Scholar
  7. 7.
    Heil T. A phase-field computer model of microstructure evolution in a ferromagnetic shape memory alloy. Virginia, USA: Blackburg; 2005.Google Scholar
  8. 8.
    Callister WD Jr. Materials science and engineering: an introduction. New York: Wiley; 2007.Google Scholar
  9. 9.
    Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1999.Google Scholar
  10. 10.
    Malkoc T, Dagdelen F. Production of CoAl and CoAlCr FSMAs and determination of their thermal, microstructure, and magnetic properties. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7508-0.CrossRefGoogle Scholar
  11. 11.
    Yang Z, Cong D, Huang L, Nie Z, Sun X, Zhang Q, et al. Large elastocaloric effect in a Ni–Co–Mn–Sn magnetic shape memory alloy. Mater Desgn. 2016;92:932–6.CrossRefGoogle Scholar
  12. 12.
    Enkovaara J, Ayuela A, Zayak A, Entel P, Nordström L, Dube M, et al. Magnetically driven shape memory alloys. Mater Sci Eng A. 2004;378(1–2):52–60.CrossRefGoogle Scholar
  13. 13.
    Ma L, Wang S, Li Y, Zhen C, Hou D, Wang W et al. Martensitic and magnetic transformation in Mn50Ni50−xSnx ferromagnetic shape memory alloys. J Appl Phys. 2012;112(8):083902.  https://doi.org/10.1063/1.4758180 CrossRefGoogle Scholar
  14. 14.
    Sozinov A, Likhachev A, Lanska N, Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl Phys Lett. 2002;80(10):1746–8.CrossRefGoogle Scholar
  15. 15.
    Marioni M, O’Handley R, Allen S, Hall S, Paul D, Richard M, et al. The ferromagnetic shape-memory effect in Ni–Mn–Ga. J Magn Magn Mater. 2005;290:35–41.CrossRefGoogle Scholar
  16. 16.
    Czaja P, Maziarz W, Dutkiewicz J. Microstructure evolution and its influence on martensitic transformation in Ni–Mn–Sn alloys. Inżynieria Materiałowa. 2013;34(3):149–52.Google Scholar
  17. 17.
    Wu Z, Liu Z, Yang H, Liu Y, Wu G, Woodward RC. Metallurgical origin of the effect of Fe doping on the martensitic and magnetic transformation behaviours of Ni50Mn40−xSn10Fex magnetic shape memory alloys. Intermetallics. 2011;19(4):445–52.CrossRefGoogle Scholar
  18. 18.
    Deltell A, Escoda L, Saurina J, Suñol JJ. Martensitic transformation in Ni–Mn–Sn–Co Heusler alloys. Metals. 2015;5(2):695–705.CrossRefGoogle Scholar
  19. 19.
    Coll R, Escoda L, Saurina J, Sánchez-Llamazares JL, Hernando B, Sunol J. Martensitic transformation in Mn–Ni–Sn Heusler alloys. J Therm Anal Calorim. 2010;99(3):905–9.CrossRefGoogle Scholar
  20. 20.
    Sanchez-Alarcos V, Recarte V, Perez-Landazabal J, Chapelon J, Rodríguez-Velamazán J. Structural and magnetic properties of Cr-doped Ni–Mn–In metamagnetic shape memory alloys. J Phys D Appl Phys. 2011;44(39):395001.CrossRefGoogle Scholar
  21. 21.
    Schlagel D, McCallum R, Lograsso T. Influence of solidification microstructure on the magnetic properties of Ni–Mn–Sn Heusler alloys. J Alloys Compd. 2008;463(1–2):38–46.CrossRefGoogle Scholar
  22. 22.
    Xin Y, Li Y, Chai L, Xu H. Shape memory characteristics of dual-phase Ni–Mn–Ga based high temperature shape memory alloys. Scrip Mater. 2007;57(7):599–601.CrossRefGoogle Scholar
  23. 23.
    Prasad RVS, Phanikumar G. Amorphous and nano crystalline phase formation in Ni2MnGa ferromagnetic shape memory alloy synthesized by melt spinning. J Mater Sci. 2009;44(10):2553–9.CrossRefGoogle Scholar
  24. 24.
    Ma Y, Jiang C, Li Y, Xu H, Wang C, Liu X. Study of Ni50+xMn25Ga25−x (x = 2–11) as high-temperature shape-memory alloys. Acta Mater. 2007;55(5):1533–41.CrossRefGoogle Scholar
  25. 25.
    Chen F, Tong Y-X, Tian B, Li L, Zheng Y-F. Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Met. 2014;33(5):511–5.CrossRefGoogle Scholar
  26. 26.
    Tan C, Tai Z, Zhang K, Tian X, Cai W. Simultaneous enhancement of magnetic and mechanical properties in Ni–Mn–Sn alloy by Fe doping. Sci Reprt. 2017;7:43387.CrossRefGoogle Scholar
  27. 27.
    Aydogdu Y, Turabi A, Aydogdu A, Kok M, Yakinci Z, Karaca H. The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys. J Therm Anal Calorim. 2016;126(2):399–406.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceFırat UniversityElazigTurkey

Personalised recommendations