Advertisement

Structural and thermal investigation of Ta–25 mass% Cu alloy prepared by mechanosynthesis route

  • Călin-Virgiliu Prică
  • Traian Florin Marinca
  • Bogdan-Viorel Neamţu
  • Florin Popa
  • Violeta Popescu
  • Ionel Chicinaş
Article
  • 88 Downloads

Abstract

A mixture of Ta and 25 mass% Cu elemental powders was subjected to mechanical alloying in a high-energy ball mill up to 60 h. The results are composite particles formed by nanocrystalline Cu and amorphous Ta phases. Thermal stability of amorphous was investigated by DSC. The XRD, FTIR and EDX analyses of Ta–25 mass% Cu powder milled for 60 h performed after DSC at 800 and 900 °C have revealed large amounts of Ta nitride and Ta oxides even though the milling process was done in Ar atmosphere. This is due to high reactivity of Ta fine particles with oxygen and nitrogen from air. During manipulations of the powder (taking samples from vials and its investigation), the adsorption phenomena on its surface occur, and both surface-adsorbed N2 and O2 are processed with powder and embedded in it. While heating of Ta–25% Cu milled powder in DSC, nitrogen and oxygen diffusion into tantalum is activated, and Ta2N and TaO2/Ta2O5 compound forms.

Keywords

Ta–Cu amorphous phase DSC Mechanical alloying Ta oxides Ta nitrides 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Predel B. Cu–Ta, thermodynamic properties—phase equilibria, crystallographic and thermodynamic data of binary alloys. Berlin: Springer; 1994.Google Scholar
  2. 2.
    Müller CM, Parviainen S, Djurabekova F, Nordlund K, Spolenak R. The as-deposited structure of co-sputtered Cu–Ta alloys, studied by X-ray diffraction and molecular dynamics simulations. Acta Mater. 2015;82:51–63.CrossRefGoogle Scholar
  3. 3.
    Kong Y, Du Y, Li J. Cage-like structure and charge hollow in the immiscible Cu–Ta system. Solid State Commun. 2009;149:1974–7.CrossRefGoogle Scholar
  4. 4.
    Venugopal T, Prasad Rao K, Murty BS. Mechanical and electrical properties of Cu–Ta nanocomposites prepared by high-energy ball milling. Acta Mater. 2007;55:4439–45.CrossRefGoogle Scholar
  5. 5.
    Venugopal T, Prasad Rao K, Murty BS. Metastable phase formation in an immiscible Cu–Ta system studied by ion-beam mixing, ab initio calculation, and molecular dynamics simulation. Acta Mater. 2003;51:3885–93.CrossRefGoogle Scholar
  6. 6.
    Laurila T, Zeng K, Kivilahti JK, Molarius J, Riekkinen T, Suni I. Tantalum carbide and nitride diffusion barriers for Cu metallisation. Microelectron Eng. 2001;60:71–80.CrossRefGoogle Scholar
  7. 7.
    Lee YJ, Kim DY, Nersisyan HH, Lee KH, Han MH, Kang KS, Bae KK, Lee JH. Rapid solid-phase synthesis for tantalum nitride nanoparticles and coatings. Int J Refract Metals Hard Mater. 2013;41:162–8.CrossRefGoogle Scholar
  8. 8.
    Ishihara A, Shotaro D, Mitsushima S, Ota K. Tantalum (oxy)nitrides prepared using reactive sputtering for new nonplatinum cathodes of polymer electrolyte fuel cell. Electrochim Acta. 2008;53:5442–50.CrossRefGoogle Scholar
  9. 9.
    Costa FA, Silva AGP, Silva Junior JF, Gomes UU. Composite Ta–Cu powders prepared by high energy milling. Int J Refract Metals Hard Mater. 2008;26:499–503.CrossRefGoogle Scholar
  10. 10.
    Xu J, He JH, Ma E. Effect of milling temperature on mechanical alloying in the immiscible Cu–Ta system. Metall Trans A. 1997;28:1569–80.CrossRefGoogle Scholar
  11. 11.
    Nastasi M, Saris FW, Hung LS, Mayer JW. Stability of amorphous Cu–Ta and Cu–W alloys. J Appl Phys. 1985;58:3052–8.CrossRefGoogle Scholar
  12. 12.
    Asami K, Moriya T, Aihara T, Hashimoto K, Masumoto T. Oxidation behaviour of sputter-deposited Cu–Ta alloys in air. Mater Sci Eng A. 1997;226:925–9.CrossRefGoogle Scholar
  13. 13.
    Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.CrossRefGoogle Scholar
  14. 14.
    Kim JH, Yoshioka H, Habazaki H, Kawashima A, Asami K, Hashimoto K. Phases in sputter-deposited Cu–Ta alloys. Mater Sci Eng A. 1992;156:211–6.CrossRefGoogle Scholar
  15. 15.
    Fukunaga T, Nakamura K, Suzuki K, Mizutani U. Amorphization of immiscible Cu–Ta system by mechanical alloying and its structure observation. J Non Cryst Solids. 1990;117:700–3.CrossRefGoogle Scholar
  16. 16.
    Lee CH, Fukunaga T, Yamarla Y, Mizutani U, Okamoto H. Amorphization process induced by mechanical alloying in the immiscible Cu–Ta system. J Phase Equilib. 1993;14:167–71.CrossRefGoogle Scholar
  17. 17.
    Xu J, He JH, Ma E. Effect of milling temperature on mechanical alloying in the immiscible Cu–Ta system. Metall Mater Trans A. 1997;28:700–3.CrossRefGoogle Scholar
  18. 18.
    Mizutani U, Lee CH. Mechanical alloying in Cu–V and Cu–Ta systems characterized by positive heat of mixing. Mater Trans JIM. 1995;36:210–7.CrossRefGoogle Scholar
  19. 19.
    Saris FW, Hung LS, Nastasi M, Mayer JW. Failure temperature of amorphous Cu–Ta alloys as diffusion barriers in Al–Si contacts. Appl Phys Lett. 1985;46:646–8.CrossRefGoogle Scholar
  20. 20.
    Al-Aqeeli N, Hussein MA, Suryanarayana C. Phase evolution during high energy ball milling of immiscible Nb–Zr alloys. Adv Powder Technol. 2015;26:385–91.CrossRefGoogle Scholar
  21. 21.
    Gagarin AP, Makin VS, Kohns P. Reversible dissolution of nitrogen and ir absorptivity of a tantalum surface. Tech Phys Lett. 2006;32:272–4.CrossRefGoogle Scholar
  22. 22.
    Garg SP, Krishnamurthy N, Awasthi A, Venkatraman M. The O–Ta (oxygen–tantalum) system. J Phase Equilib. 1996;17:63–77.CrossRefGoogle Scholar
  23. 23.
    Stampfl C, Freeman AJ. Stable and metastable structures of the multiphase tantalum nitride system. Phys Rev B Condens Matter. 2005;71:024111.CrossRefGoogle Scholar
  24. 24.
    Colthup N. Introduction to infrared and Raman spectroscopy. Amsterdam: Elsevier; 2012.Google Scholar
  25. 25.
    Aygun G, Turan R. Electrical and dielectrical properties of tantalum oxide films grown by Nd: YAG laser assisted oxidation. Thin Solid Films. 2008;517:994–9.CrossRefGoogle Scholar
  26. 26.
    Dharmaraj N, Park HC, Kim CH, Viswanathamurthi P, Kim HY. Nanometer sized tantalum pentoxide fibres prepared by electrospinning. Mater Res Bull. 2006;41:612–9.CrossRefGoogle Scholar
  27. 27.
    Epifani M, Zamani R, Arbiol J, Fabrega C, Andreu T, Pace GB, Morante JR. Soft chemistry routes to transparent metal oxide thin films. The case of sol–gel synthesis and structural characterization of Ta2O5 thin films from tantalum chloromethoxide. Thin Solid Films. 2014;555:39–41.CrossRefGoogle Scholar
  28. 28.
    Wu YY, Eizenberg M. FTIR and ellipsometry characterization of ultra-thin ALD TaN films. Mater Chem Phys. 2007;101:269–75.CrossRefGoogle Scholar
  29. 29.
    Lei W, Liu D, Zhang J, Shen L, Li X, Cui Q, Zou G. Direct synthesis and characterization of single-phase tantalum nitride (Ta2N) nanocrystallites by dc arc discharge. J Alloys Compd. 2008;459:298–301.CrossRefGoogle Scholar
  30. 30.
    Lei W, Liu D, Shen L, Zhang J, Zhu P, Cui Q, Zou G. Growth and characterization of single-phase metastable tantalum nitride nanocrystals by dc arc discharge. J Cryst Growth. 2007;306:413–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Materials Science and Engineering DepartmentTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Physics and Chemistry DepartmentTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations