Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2001–2016 | Cite as

Thermal degradation kinetics of ionic liquid [BMIM]BF4/TEA/PFSA composite membranes for fuel cell

  • Yi-heng LuEmail author
  • Kang Li
  • Yu-wei Lu
  • Wen-quan Feng


20% ILs-TEA-PFSA composite membranes were prepared using the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 (ILs) and were doped with triethylamine (TEA) to modify the perfluorosulfonic acid (PFSA). The thermal decomposition kinetics of the composite membrane was investigated using nonisothermal thermogravimetry in order to study the high-temperature durability of the ionic-liquid-doped industrial-grade perfluorosulfonic acid ion membrane for fuel cells. The results showed that the thermal degradation of the composite membranes occurs over three stages, for which the conversion rates are in the ranges of 0.01–0.1, 0.15–0.4 and 0.45–0.7. The average apparent activation energies of membrane degradation in the first, second and third stages are 151.3, 166.5 and 170.1 kJ mol−1, respectively. At a heating rate (β) of 20 °C min−1, the thermal degradation process of the composite mechanism follows an n = 4 reaction order mechanism, and the mechanism function f(α) is 1 − (1 − α)4 and g(α) is 1/4 (1 − α)−3. The heat resistance showed that if β is equal to 15 °C min−1, the lowest temperature at which the composite membrane decomposes by 1% is 363.5 °C. Similarly, when α is 0.32%, the thermal decomposition of the composite membrane occurs above 350 °C. Isothermal thermogravimetric analysis showed that the thermal lifetimes (t5% and t10%) of the composite membrane were 4.83 × 105 and 9.80 × 105 h, respectively. If α reached 5 and 10% under a nitrogen atmosphere at 180 °C, the isothermal decomposition process underwent a first-order reaction mechanism. The apparent activation energy (Ea) of the thermal degradation of the composite membrane was 166.8 kJ mol−1. In addition, using isothermal data from a 20% [BMIM] BF4/TEA/PFSA composite membrane at 688 K, based on a first-order reaction, the respective theoretical master curves were compared with the experimental master plots of dα/dθ/(dα/dθ)α=0.5, θ/θ0.5 and (dα/dθ)θ versus α.


1-Butyl-3-methylimidazolium tetrafluoroborate Perfluorinated sulfonic acid Composite membrane Thermal degradation kinetics Thermal life 



This research was financially supported by the following grants: (1) Anhui Province University Students Innovation and Entrepreneurship Program (AH201410361217), (2) Anhui International Science and Technology Cooperation Program (06088018), (3) Huainan Municipal Science and Technology Program (2011A07923).


  1. 1.
    Shi Q, Tao K, Zhang Q, Xue L, Zhang Y. Progress on application of ionic liquids in proton exchange membranes. Membr Sci Technol. 2013;33(3):113–20.Google Scholar
  2. 2.
    Ren S, Xu Mei-ling. Process of ionic liquid based proton exchange membranes. Chin J Power Sources. 2014;38(2):394–7.Google Scholar
  3. 3.
    Gharagheizi F, Keshavarz MH. A group contribution method for estimation of glass-transition temperature of 1, 3-dialkylimidazolium ionic liquid. J Therm Anal Calorim. 2013;114:1363–82.CrossRefGoogle Scholar
  4. 4.
    Che B-K, Wu T-Y, Kuo C-W, Peng Y-C. 4,40-Oxydianiline (ODA) containing sulfonated polyimide/protic ionic liquid composite membranes for anhydrous proton conduction. Int J Hydrog Energy. 2013;38:11321–30.CrossRefGoogle Scholar
  5. 5.
    Lee S-Y, Yasuda T, Watanabe M. Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J Power Sources. 2010;195:5909–14.CrossRefGoogle Scholar
  6. 6.
    Kowsari E, Zare A, Ansari V. Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int J Hydrog Energy. 2015;40:13964–78.CrossRefGoogle Scholar
  7. 7.
    Dahi A, Fatyeyeva K, Langevin D, Chappey C, Rogalsky SP, Tarasyuk OP, Marais S. Polyimide/ionic liquid composite membranes for fuel cells operatingat high temperatures. Electrochim Acta. 2014;130:830–40.CrossRefGoogle Scholar
  8. 8.
    Malik RS, Verma P, Choudhary V. A study of new anhydrous, conducting membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel cell application. Electrochim Acta. 2015;152:352–9.CrossRefGoogle Scholar
  9. 9.
    Yi S, Zhang F, Li W, Huang C, Zhang H, Pana M. Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids. J Membr Sci. 2011;366:349–55.CrossRefGoogle Scholar
  10. 10.
    Zhang H, Wu W, Wang J, Zhang T, Shi B, Liu J, Cao S. Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways. J Membr Sci. 2015;476:136–47.CrossRefGoogle Scholar
  11. 11.
    Che Q, Zhou L, Wang J. Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes. J Mol Liq. 2015;206:10–8.CrossRefGoogle Scholar
  12. 12.
    Zhang H, Wu Wenjia, Li Y, Liu Y, Wang J, Zhang B, Liu J. Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity. J Power Sources. 2015;279:667–77.CrossRefGoogle Scholar
  13. 13.
    Che Q, Sun B, He R. Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride. Electrochim Acta. 2008;53:4428–34.CrossRefGoogle Scholar
  14. 14.
    Xu C, Liu X, Cheng J, Scott K. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Power Sources. 2015;274:922–7.CrossRefGoogle Scholar
  15. 15.
    Wang JT-W, Hsu SL-C. Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochim Acta. 2011;56:2842–6.CrossRefGoogle Scholar
  16. 16.
    Carrillo RH, Suarez-Guevara J, Torres-González LC, Gómez-Romero P, Sánchez EM. Incorporation of benzimidazolium ionic liquid in proton exchange membranes ABPBI–H3PO4. J Mol Liq. 2013;181:115–20.CrossRefGoogle Scholar
  17. 17.
    van de Ven E, Chairuna A, Merle G, Benito SP. Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. J Power Sources. 2013;222:202–9.CrossRefGoogle Scholar
  18. 18.
    Blanco I, Cicala G, Latteri A, Mamo A, Recca A. Thermal and thermo-oxidative degradations of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/copoly(aryl ether sulfone) P(ESES-co-EES) block copolymers: a kinetic study. J Therm Anal Calorim. 2013;112:375–81.CrossRefGoogle Scholar
  19. 19.
    Pasierb P, Gajerski R, Osiadły M, Łącz A. Application of DTA-TG-MS for determination of chemical stability of BaCeO3-δ-based protonic conductors. J Therm Anal Calorim. 2014;117:683–91.CrossRefGoogle Scholar
  20. 20.
    Ke HZ, Pang ZY, Peng B, Wang J, Cai YB, Huang FL, Wei QF. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver. J Therm Anal Calorim. 2016;123:1293–307.CrossRefGoogle Scholar
  21. 21.
    Ortiz E, Pineres I, Leon C. On the low- to high proton-conducting transformation of a CsHSO4–CsH2PO4 solid solution and its parents Physical or chemical nature? J Therm Anal Calorim. 2016;126:407–19.CrossRefGoogle Scholar
  22. 22.
    Dehabadi LL, Udoetok IA, Wilson LD. Macromolecular hydration phenomena: an overview of DSC studies on sulfonated tetrafluoroethylene-based fluoropolymer–copolymer (Nafion) and cellulose biopolymer materials. J Therm Anal Calorim. 2016;126:1851–66.CrossRefGoogle Scholar
  23. 23.
    Lis B, Dudek M, Kluczowski R, Krauz M, Kawalec M, Mosiałek M, Lach R. Physicochemical properties of ceramic tape involving Ca0.05Ba0.95 Ce0.9Y0.1O3 as an electrolyte designed for electrolyte-supported solid oxide fuel cells (IT-SOFCs). J Therm Anal Calorim. 2018. Scholar
  24. 24.
    Tofighi A, Rahimnejad M, Ghorbani M. Ternary nanotube a-MnO2/GO/AC as an excellent alternative composite modifier for cathode electrode of microbial fuel cell. J Therm Anal Calorim. 2018. Scholar
  25. 25.
    Toghyani S, Afshari E, Baniasadi E. Three-dimensional computational fluid dynamics modeling of proton exchange membrane electrolyzer with new flow field pattern. J Therm Anal Calorim. 2018. Scholar
  26. 26.
    Kitazawa Y, Iwata K, Kido R, Imaizumi S, Tsuzuki S, Shinoda W, Ueno K, Mandai T, Kokubo H, Dokko K, Watanabe M. Polymer electrolytes containing solvate ionic liquids: a new approach to achieve high ionic conductivity, thermal stability and a wide potential window. Chem Mater. 2018;30:252–61.CrossRefGoogle Scholar
  27. 27.
    Chen G, Chen N, Li L, Wang Q, Duan WF. Ionic liquid modified poly(vinyl alcohol) with improved thermal processability and excellent electrical conductivity. Ind Eng Chem Res. 2018;57:5472–81.CrossRefGoogle Scholar
  28. 28.
    Baczynska M, Waszak M, Nowicki M, Prządka D, Borysiak S, Regel-Rosocka M. Characterization of polymer inclusion membranes (PIMs) containing phosphonium ionic liquids as Zn(II) carriers. Ind Eng Chem Res. 2018;57:5070–82.CrossRefGoogle Scholar
  29. 29.
    Li JS, Wang S, Xu JM, Xu LS, Liu FX, Tian X, Wang Z. Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells. J Membr Sci. 2017;529:243–51.CrossRefGoogle Scholar
  30. 30.
    Liu FX, Wang S, Li JS, Tian X, Wang X, Chen H, Wang Z. Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells. J Membr Sci. 2017;541:492–9.CrossRefGoogle Scholar
  31. 31.
    Feng W, Lu Y, Chen Y, Lu Y, Yang T. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J Therm Anal Calorim. 2016;125(1):143–54.CrossRefGoogle Scholar
  32. 32.
    Lu Y, Cao Y, Lu Y, Yang T. Thermal stability and lifetime of [AMIM]Cl-PFSA composite membranes. J Therm Anal Calorim. 2017;128(3):1601–15.CrossRefGoogle Scholar
  33. 33.
    Kissinger HE. Variation of peak temperature with heating rat e in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.CrossRefGoogle Scholar
  34. 34.
    Ozaw AT. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  35. 35.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry application to phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6(1):183–95.CrossRefGoogle Scholar
  36. 36.
    Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288(1/2):97–104.CrossRefGoogle Scholar
  37. 37.
    Hu R, Shi Q. Thermal analysis dynamics. 2nd ed. Beijing: Science Press; 2008. p. 151–5.Google Scholar
  38. 38.
    Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  39. 39.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the Universality of master plots for analysing isothermal and non-isothermal experiments. J Phys Chem A. 2000;104:10777–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Chemical EngineeringAnhui University of Science and TechnologyHuainanChina
  2. 2.Laboratoire de Chimie PhysiqueUniversite de Paris SudOrsay CedexFrance

Personalised recommendations