Advertisement

Thermal and electrical properties of Ca5Mg4−xZnx(VO4)6 (0 ≤ x ≤ 4)

  • Anna S. Tolkacheva
  • Sergey N. Shkerin
  • Kirill G. Zemlyanoi
  • Olga G. Reznitskikh
  • Svetlana V. Pershina
  • Pavel D. Khavlyuk
Article
  • 15 Downloads

Abstract

Calcium vanadates Ca5Mg4−xZnx(VO4)6 (0 ≤ x ≤ 4) have been studied for the first time using a set of high-temperature methods of analysis. The onset of melting process determined from differential scanning calorimetry decreases from 1158 to 881 °C (± 1.5 °C) with increasing of x (dopant’s content). CTE temperature dependence is found to show a hysteresis. Electrical transport properties measured by impedance spectroscopy in air of different humidity are also discussed. The value of electrical conductivity does not depend on air humidity. It is found to equal to 1.5 × 10−6 S cm−1 at 720 °C for Ca5Mg4(VO4)6 which is specific for garnet-related crystals.

Keywords

Non-stoichiometric garnet Electrical conductivity DSC Thermal expansion 

Notes

Acknowledgements

The reported study was funded by the RFBR according to the research Project No. 17–03–01280. Powder diffraction experiments were carried out in the Shared Access Centre at the IHTE UB RAS.

References

  1. 1.
    Huang Y, Yu YM, Tsuboi T, Seo HJ. Novel yellow-emitting phosphors of Ca5M4(VO4)6 (M = Mg, Zn) with isolated VO4 tetrahedra. Opt Express. 2012;20(4):4360–8.CrossRefGoogle Scholar
  2. 2.
    Pavitra E, Raju GSR, Park JY, Wang L, Moon BK, Yu JS. Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes. Sci Rep. 2015.  https://doi.org/10.1038/srep10296.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yao G, Liu P, Zhang H. Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn). J Am Ceram Soc. 2013;96(6):1691–3.CrossRefGoogle Scholar
  4. 4.
    Wang D, Xiang H, Tang Y, et al. A low-firing Ca5Ni4(VO4)6 ceramic with tunable microwave dielectric properties and chemical compatibility with Ag. Ceram Int. 2016;42:15094–5.CrossRefGoogle Scholar
  5. 5.
    Xiang H, Fang L, Jiang X, Li C. Low-firing and microwave dielectric properties of Na2YMg2V3O12 ceramic. Ceram Int. 2016;42:3701–5.CrossRefGoogle Scholar
  6. 6.
    Xiang H, Tang Y, Fang L, Porwal H, Li C. A novel ultra-low temperature cofired Na2BiZn2V3O12 ceramic and its chemical compatibility with metal electrodes. J Mater Sci Mater Electron. 2016.  https://doi.org/10.1007/s10854-016-5689-5.CrossRefGoogle Scholar
  7. 7.
    Müller-Buschbaum HK, Postel M. Eine weitere oxovanadat-phase mit Granatstruktur: Ca5Mg3ZnV6O24. Z Anorg Allg Chem. 1992;615:101–3.CrossRefGoogle Scholar
  8. 8.
    Gfeller F. Mayenite Ca12Al14O32[X2−]: from minerals to the first stable electride crystals: highlights in mineralogical crystallography/Thomas Armbruster; Rosa Micaela Danisi. Berlin: de Gruyter; 2016.Google Scholar
  9. 9.
    Galuskin E, Gfeller F, Galushkina IO, Armbruster T, Bailau R, Sharygin VV. Mayenite supergroup, part I: recommended nomenclature. Eur J Mineral. 2015;27:99–111.CrossRefGoogle Scholar
  10. 10.
    Hosono H, Hayashi K, Kajihara K, Sushko P, Shluger A. Oxygen ion conduction in 12CaO·7Al2O3: O2− conduction mechanism and possibility of O fast conduction. Solid State Ion. 2009;180:550–6.CrossRefGoogle Scholar
  11. 11.
    Lide DR, editor. CRC handbook of chemistry and physics. 84th ed. Boca Raton: CRC Press; 2003. p. 4–93.Google Scholar
  12. 12.
    Dhar R, Pandey RS, Srivastava SL. Applicability of Van’t Hoff equation in calculation of impurities in liquid crystalline materials. Indian J Pure Appl Phys. 2002;40:42–4.Google Scholar
  13. 13.
    Eufinger JP, Schmidt A, Lerch M, Janek J. Novel anion conductors—conductivity, thermodynamic stability and hydration of anion substituted mayenite-type cage compounds C12A7: X (X = O, OH, Cl, F, CN, S, N). Phys Chem Chem Phys. 2015;17:6844–57.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Anna S. Tolkacheva
    • 1
    • 2
  • Sergey N. Shkerin
    • 1
  • Kirill G. Zemlyanoi
    • 2
  • Olga G. Reznitskikh
    • 3
    • 4
  • Svetlana V. Pershina
    • 1
  • Pavel D. Khavlyuk
    • 2
  1. 1.Institute of High-Temperature ElectrochemistryUral Branch of Russian Academy of SciencesEkaterinburgRussia
  2. 2.INMT Ural Federal UniversityEkaterinburgRussia
  3. 3.Institute of Solid State ChemistryUral Branch of Russian Academy of SciencesEkaterinburgRussia
  4. 4.Inenergy LlcMoscowRussia

Personalised recommendations