Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 4, pp 1667–1678 | Cite as

Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites

  • Yansong Yu
  • Fangxinyu Zeng
  • Jinyao Chen
  • Jian KangEmail author
  • Feng Yang
  • Ya Cao
  • Ming Xiang
Article

Abstract

In this paper, effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites were investigated. Under all cooling rates, as fusion temperature Tf stepped into the range of 168–178 °C, the ordered structure survived in the melt, resulting in the increase in crystallization peak temperature Tp, the decrease in crystallization activation energy ΔE and the decrease in the half crystallization time t1/2. When endset temperature of cooling Tend = 50 °C, lower cooling rate encouraged the formation of more β-phase. Moreover, the influence of ordered structure on β-α recrystallization was studied by adjusting the Tend. When Tend = 105 °C, higher cooling rate encouraged the formation of more β-phase. The ordered structure was favorable for the improvement of the thermal stability of the β-phase during β-α recrystallization.

Keywords

Non-isothermal crystallization kinetics Graphene oxide Isotactic polypropylene β-Nucleating agent Ordered structure 

Notes

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (NSFC 51503134, 51421061, 51721091) and the State Key Laboratory of Polymer Materials Engineering (Grant No. SKLPME 2017-3-02) for the financial support.

References

  1. 1.
    Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M. Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci. 2013;130:25–38.CrossRefGoogle Scholar
  2. 2.
    Wang S-W, Yang W, Bao R-Y, Wang B, Xie B-H, Yang M-B. The enhanced nucleating ability of carbon nanotube-supported β-nucleating agent in isotactic polypropylene. Colloid Polym Sci. 2010;288:681–8.CrossRefGoogle Scholar
  3. 3.
    Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.CrossRefGoogle Scholar
  4. 4.
    McKeown NB. Molecular nanoporous crystals: predictable porosity. Nat Mater. 2011;10:563–4.CrossRefGoogle Scholar
  5. 5.
    Dutta S, Pati SK. Novel properties of graphene nanoribbons: a review. J Mater Chem. 2010;20:8207.CrossRefGoogle Scholar
  6. 6.
    Miller JR, Simon P. Materials science. Electrochemical capacitors for energy management. Science. 2008;321:651–2.CrossRefGoogle Scholar
  7. 7.
    Cui Y, Kundalwal SI, Kumar S. Gas barrier performance of graphene/polymer nanocomposites. Carbon. 2016;98:313–33.CrossRefGoogle Scholar
  8. 8.
    Liang M, Zhi L. Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem. 2009;19:5871.CrossRefGoogle Scholar
  9. 9.
    Imran Jafri R, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem. 2010;20:7114.CrossRefGoogle Scholar
  10. 10.
    Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem. 2010;20:7864.CrossRefGoogle Scholar
  11. 11.
    Goyal V, Balandin AA. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett. 2012;100:073113.CrossRefGoogle Scholar
  12. 12.
    Cai D, Song M. Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem. 2010;20:7906.CrossRefGoogle Scholar
  13. 13.
    Park O-K, Hwang J-Y, Goh M, Lee JH, Ku B-C, You N-H. Mechanically strong and multifunctional polyimide nanocomposites using amimophenyl functionalized graphene nanosheets. Macromolecules. 2013;46:3505–11.CrossRefGoogle Scholar
  14. 14.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–40.CrossRefGoogle Scholar
  15. 15.
    Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, Ruoff RS. Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon. 2011;49:2615–23.CrossRefGoogle Scholar
  16. 16.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Func Mater. 2009;19:2297–302.CrossRefGoogle Scholar
  17. 17.
    Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules. 2010;43:6716–23.CrossRefGoogle Scholar
  18. 18.
    Cao Y, Feng J, Wu P. Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon. 2010;48:1683–5.CrossRefGoogle Scholar
  19. 19.
    Li W, Tang X-Z, Zhang H-B, Jiang Z-G, Yu Z-Z, Du X-S, Mai Y-W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon. 2011;49:4724–30.CrossRefGoogle Scholar
  20. 20.
    Yun YS, Bae YH, Kim DH, Lee JY, Chin I-J, Jin H-J. Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon. 2011;49:3553–9.CrossRefGoogle Scholar
  21. 21.
    Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.CrossRefGoogle Scholar
  22. 22.
    Pawlak A, Piorkowska E. Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci. 2001;279:939–46.CrossRefGoogle Scholar
  23. 23.
    Byelov D, Panine P, Remerie K, Biemond E, Alfonso GC, de Jeu WH. Crystallization under shear in isotactic polypropylene containing nucleators. Polymer. 2008;49:3076–83.CrossRefGoogle Scholar
  24. 24.
    Fillon B, Thierry A, Wittmann JC, Lotz B. Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. J Polym Sci Part B Polym Phys. 1993;31:1407–24.CrossRefGoogle Scholar
  25. 25.
    Bai H, Wang Y, Zhang Z, Han L, Li Y, Liu L, Zhou Z, Men Y. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules. 2009;42:6647–55.CrossRefGoogle Scholar
  26. 26.
    Xu J-Z, Liang Y-Y, Huang H-D, Zhong G-J, Lei J, Chen C, Li Z-M. Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res. 2012;19:9975.CrossRefGoogle Scholar
  27. 27.
    Bao R-Y, Cao J, Liu Z-Y, Yang W, Xie B-H, Yang M-B. Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J Mater Chem A. 2014;2:3190–9.CrossRefGoogle Scholar
  28. 28.
    Zhang Y-F, Xin Z. Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. J Polym Sci Part B Polym Phys. 2007;45:590–6.CrossRefGoogle Scholar
  29. 29.
    Bai H, Wang Y, Zhang Q, Liu L, Zhou Z. A comparative study of polypropylene nucleated by individual and compounding nucleating agents. I. Melting and isothermal crystallization. J Appl Polym Sci. 2009;111:1624–37.CrossRefGoogle Scholar
  30. 30.
    Zhao S, Xin Z. Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci Part B Polym Phys. 2010;48:653–65.CrossRefGoogle Scholar
  31. 31.
    Lorenzo AT, Müller AJ. Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B Polym Phys. 2008;46:1478–87.CrossRefGoogle Scholar
  32. 32.
    Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L. Direct formation of isotactic poly(1-butene) form I crystal from memorized ordered melt. Macromolecules. 2013;46:7399–405.CrossRefGoogle Scholar
  33. 33.
    Cavallo D, Gardella L, Portale G, Müller AJ, Alfonso GC. Self-nucleation of isotactic poly(1-butene) in the trigonal modification. Polymer. 2014;55:137–42.CrossRefGoogle Scholar
  34. 34.
    Li X, Su F, Ji Y, Tian N, Lu J, Wang Z, Qi Z, Li L. Influence of the memory effect of a mesomorphic isotactic polypropylene melt on crystallization behavior. Soft Matter. 2013;9:8579.CrossRefGoogle Scholar
  35. 35.
    Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res. 2014;21:384.CrossRefGoogle Scholar
  36. 36.
    Li H, Yan S. Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules. 2011;44:417–28.CrossRefGoogle Scholar
  37. 37.
    Liu Q, Sun X, Li H, Yan S. Orientation-induced crystallization of isotactic polypropylene. Polymer. 2013;54:4404–21.CrossRefGoogle Scholar
  38. 38.
    Cavallo D, Azzurri F, Balzano L, Funari SS, Alfonso GC. Flow memory and stability of shear-induced nucleation precursors in isotactic polypropylene. Macromolecules. 2010;43:9394–400.CrossRefGoogle Scholar
  39. 39.
    Cavallo D, Portale G, Balzano L, Azzurri F, Bras W, Peters GW, Alfonso GC. Real-time WAXD detection of mesophase development during quenching of propene/ethylene copolymers. Macromolecules. 2010;43:10208–12.CrossRefGoogle Scholar
  40. 40.
    Zhang B, Chen J, Cui J, Zhang H, Ji F, Zheng G, Heck B, Reiter G, Shen C. Effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules. 2012;45:8933–7.CrossRefGoogle Scholar
  41. 41.
    Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C. Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer. 2012;53:1791–800.CrossRefGoogle Scholar
  42. 42.
    Kang J, Weng G, Chen Z, Chen J, Cao Y, Yang F, Xiang M. New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. RSC Adv. 2014;4:29514–26.CrossRefGoogle Scholar
  43. 43.
    Kang J, Chen Z, Yang F, Chen J, Cao Y, Weng G, Xiang M. Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures. Colloid Polym Sci. 2015;293:2061–73.CrossRefGoogle Scholar
  44. 44.
    Wang B, Chen Z, Kang J, Yang F, Chen J, Cao Y, Xiang M. Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer. Thermochim Acta. 2015;604:67–76.CrossRefGoogle Scholar
  45. 45.
    Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J, Cao Y, Xiang M, Li H. Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci. 2015.  https://doi.org/10.1002/app.41355.
  46. 46.
    Menyhárd A, Dora G, Horváth Z, Faludi G, Varga J. Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim. 2011;108:613–20.CrossRefGoogle Scholar
  47. 47.
    Molnár J, Menyhárd A. Separation of simultaneously developing polymorphic modifications by stepwise crystallization technique in non-isothermal calorimetric experiments. J Therm Anal Calorim. 2016;124:1463–9.CrossRefGoogle Scholar
  48. 48.
    Kang J, Xiong B, Liu D, Cao Y, Chen J, Yang F, Xiang M. Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res. 2014;21:485.CrossRefGoogle Scholar
  49. 49.
    Chen Z, Kang W, Kang J, Chen J, Yang F, Cao Y, Xiang M. Non-isothermal crystallization behavior and melting behavior of Ziegler-Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent. Polym Bull. 2015;72:3283–303.CrossRefGoogle Scholar
  50. 50.
    Dietz W. Effect of cooling on crystallization and microstructure of polypropylene. Polym Eng Sci. 2016;56:1291–302.CrossRefGoogle Scholar
  51. 51.
    Chen Y-H, Mao Y-M, Li Z-M, Hsiao BS. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules. 2010;43:6760–71.CrossRefGoogle Scholar
  52. 52.
    Zhang Q, Peng H, Kang J, Cao Y, Xiang M. Effects of melt structure on non-isothermal crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. Polym Eng Sci. 2017;57:989–97.CrossRefGoogle Scholar
  53. 53.
    Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H. Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized x-ray measurements. Macromolecules. 2007;40:2745–50.CrossRefGoogle Scholar
  54. 54.
    Horvath Z, Sajo IE, Stoll K, Menyhard A, Varga J. The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. Express Polym Lett. 2010;4:101–14.CrossRefGoogle Scholar
  55. 55.
    Varga J. β-Modification of polypropylene and its two-component systems. J Therm Anal. 1989;35:1891–912.CrossRefGoogle Scholar
  56. 56.
    Lotz B, Fillon B, Thierry A. Low Tc growth transitions in isotactic polypropylene: β to α and α to smectic phases. Polym Bull. 1991;25:101–5.Google Scholar
  57. 57.
    Wang G, Shen X, Wang B, Yao J, Park J. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon. 2009;47:1359–64.CrossRefGoogle Scholar
  58. 58.
    Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M. Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler-Natta isotactic polypropylene. Eur Polym J. 2012;48:425–34.CrossRefGoogle Scholar
  59. 59.
    Müller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30:559–603.CrossRefGoogle Scholar
  60. 60.
    Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res. 2013;20:70.CrossRefGoogle Scholar
  61. 61.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  62. 62.
    Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6.CrossRefGoogle Scholar
  63. 63.
    Kang J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Gai J, Yang F, Xiang M. Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Appl Polym Sci. 2013;129:2663–70.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations