Advertisement

Impact of rock fabric, thermal behavior, and carbonate decomposition kinetics on quicklime industrial production and slaking reactivity

  • Gabriele Vola
  • Pierangelo Bresciani
  • Elisa Rodeghero
  • Luca Sarandrea
  • Giuseppe Cruciani
Review
  • 53 Downloads

Abstract

This paper deals with thermal analyses, burning trials and reactivity tests on 15 carbonate rocks, i.e., pure and impure carbonates, mud-supported and grain-supported limestones, crystalline marbles, and dolomites, used for the production of different lime products in industrial vertical shaft kilns worldwide. In particular, thermogravimetric and differential thermogravimetric analysis (TG–DTG) on massive (80–120 g) fine-grained (< 3.35 mm) samples allowed the extrapolation of the Arrhenius kinetic parameters, i.e., the (apparent) activation energy (Ea) and the pre-exponential or frequency factor (A). Other calcination parameters, i.e., the duration time, starting and ending calcination times and temperatures, and peaks of maximum calcination rate were also extrapolated in order to enhance their relationships with quicklime reactivity. Moreover, thermal analyses (TG–DTG–DTA) were repeated on powders (90 mg) using a more accurate analyzer to compare results. The study is completed by a thorough chemical–physical and mineralogical–petrographic characterization of carbonate rocks and derived burnt products. Results pointed out that medium-to-coarse crystalline materials, i.e., grain-supported limestones, diagenetic dolomites, and granoblastic marbles presented the highest activation energy, burnability and slaking reactivity. Conversely, microcrystalline carbonates with the highest micrite-to-sparite ratio, i.e., mud-supported limestones, and impure carbonates, enriched in quartz, clay minerals, and other subordinated non-carbonate impurities, presented the lowest activation energy, burnability, and slaking reactivity. This study also investigated the effect of BET-specific surface area and real density, depending on specific sintering tendency, on quicklime reactivity. Results from this multidisciplinary research activity put further constraints on carbonate rocks calcination kinetics and their suitability in the lime industry.

Keywords

Calcination kinetics Quicklime reactivity Micrite-to-sparite ratio Limestone burnability 

Notes

Acknowledgements

Authors gratefully acknowledge helpful peer review of the manuscript by the blind reviewers. We also would like to thank you Prof. Daniele Mazza (PoliTo) for useful suggestions and discussions on kinetics parameters and the FSW method.

References

  1. 1.
    König G, Rellermeyer H, Obst KH. Processes taking place in the dissolution of hard and soft-burnt lime in the slags from the basic oxygen furnaces. Stahl Eisen. 1967;87(18):1071–7.Google Scholar
  2. 2.
    Obst K-H, Stradtmann J, Ullrich W, König G. Present status and technical advances of steelworks lime for basic oxygen furnaces in Germany. The reaction parameters of lime. ASTM STP. 1970;472:173–92.Google Scholar
  3. 3.
    Limes RW, Russell RO. Crucible test for lime reactivity in slags. The reaction parameters of lime. ASTM STP. 1970;472:161–72.Google Scholar
  4. 4.
    Boynton RS. Chemistry and technology of lime and limestone. New York: Wiley; 1982.Google Scholar
  5. 5.
    Elsen J, Mertens G, Snellings R. Portland cement and other calcareous hydraulic binders: history, production and mineralogy. In: Christidis GE, editor. Advances in the characterization of industrial minerals. EMU notes in mineralogy. London: Mineralogical Society; 2011. p. 441–79.CrossRefGoogle Scholar
  6. 6.
    Oates JAH. Lime and limestone: chemistry and technology, production and uses. Weinhein: Wiley; 1998. p. 139–54.Google Scholar
  7. 7.
    Georgieva V, Vlaev L, Gyurova K. Non-isothermal degradation kinetics of CaCO3 from different origin. J Chem. 2013.  https://doi.org/10.1155/2013/872981.CrossRefGoogle Scholar
  8. 8.
    Tian H, Cai L, Jiang T, et al. Study of kinetic characteristics of limestone decomposition under different atmospheres and heating conditions. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6529-4.CrossRefGoogle Scholar
  9. 9.
    Cheng C, Specth E. Reaction rate coefficients in decomposition of lumpy limestone of different origin. Thermochim Acta. 2006;449:8–15.CrossRefGoogle Scholar
  10. 10.
    Eades JL, Sandberg PA. Characterization of the properties of commercial lime by surface area measurements and scanning electron microscopy. The reaction parameters of lime. ASTM STP. 1970;472:3–24.Google Scholar
  11. 11.
    McClellan GH, Eades JL. The textural evolution of limestone calcines. The reaction parameters of lime. ASTM STP. 1970;472:209–27.Google Scholar
  12. 12.
    Borgwardt RH. Calcination kinetics and surface area of dispersed limestone particles. AIChE J. 1985;31:103.CrossRefGoogle Scholar
  13. 13.
    Borgwardt RH, Bruce KR. Effect of specific surface area on the reactivity of CaO with SO2. AlChE J. 1986;32(2):239–46.CrossRefGoogle Scholar
  14. 14.
    Wright G. Effect of impurities on lime reactivity. Ash Grove Cement Company, Rivergate Lime Plant, confidential internal report. 1985. p. 1–41.Google Scholar
  15. 15.
    Baziotis I, Leontakianakos G, Proyer A, Lee H, Tsimas S. Physico-chemical properties of different carbonate rocks: are they highly enough to control lime reactivity? Int J Chem. 2011.  https://doi.org/10.5539/ijc.v3n2p187.CrossRefGoogle Scholar
  16. 16.
    Akande HF, Abdulkareem AS, Kovo AS, Azeez OS, Onifade KR. Application of factorial analysis for quicklime production from limestone. Niger J Technol Res. 2016;11(2):16–25.CrossRefGoogle Scholar
  17. 17.
    Hogewoning S, Wolter A, Schmidt S-O. Dependence of hard burn potential on limestone properties. ZKG Int. 2008;61(6):54–60 (part 1); 61(7):84–93 (part 2).Google Scholar
  18. 18.
    Lech R, Wodnicka K, Pędzich Z. Effect of the limestone fabric on the fabric development in burnt lime. ZKG Int. 2009;6/7(62):94–101 (part 1); 8(62):63–72 (part 2).Google Scholar
  19. 19.
    Rodriguez-Navarro C, Ruiz-Agudo E, Luque A, Navarro AB, Ortega-Huertas M. Thermal decomposition of calcite: mechanisms of formation and textural evolution of CaO nanocrystals. Am Mineral. 2009.  https://doi.org/10.2138/am.2009.3021.CrossRefGoogle Scholar
  20. 20.
    Soltan AMM. Petrographic modelling of Egyptian limestones for quicklime manufacture. Arab J Geosci. 2009.  https://doi.org/10.1007/s12517-009-0095-4.CrossRefGoogle Scholar
  21. 21.
    Soltan AMM, Serry MA-K. Impact of limestone microstructure on calcination activation energy. Adv Appl Ceram. 2011.  https://doi.org/10.1179/1743676111Y.0000000042.CrossRefGoogle Scholar
  22. 22.
    Soltan AMM, Kahl W-A, Hazem MM, Wendschuh M, Fischer RX. Thermal microstructural changes of grain-supported limestones. Minerol Petrol. 2011.  https://doi.org/10.1007/s00710-011-0151-0.CrossRefGoogle Scholar
  23. 23.
    Soltan AMM, Kahl W-A, Wendschuh M, Hazem MM. Microstructure and reactivity of calcined mud supported limestones. Miner Process Extr Metall. 2012.  https://doi.org/10.1179/1743285511Y.0000000024.CrossRefGoogle Scholar
  24. 24.
    Vola G, Sarandrea L. Raw materials characterization for industrial lime manufacturing. ZKG Int. 2013;66(5):62–70.Google Scholar
  25. 25.
    Alaabed S, Soltan MA, Abdelghany O, Amin BEM, Tokhi ME, Khaleel A, Musalim A. United Arab Emirates limestones: impact of petrography on thermal behaviour. Minerol Petrol. 2014.  https://doi.org/10.1007/s00710-014-0329-3.CrossRefGoogle Scholar
  26. 26.
    Vola G, Sarandrea L, Della Porta G, Cavallo A, Jadoul F, Cruciani G. The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup, South Africa). Minerol Petrol. 2017.  https://doi.org/10.1007/s00710-017-0542-y.CrossRefGoogle Scholar
  27. 27.
    Marinoni N, Bernasconi A, Della Porta G, Marchi M, Pavese A. The role of petrography on the thermal decomposition and burnability of limestones used in industrial cement clinker. Minerol Petrol. 2015.  https://doi.org/10.1007/s00710-015-0398-y.CrossRefGoogle Scholar
  28. 28.
    Galimberti M, Marinoni N, Della Porta G, Marchi M, Dapiaggi M. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability. Minerol Petrol. 2016.  https://doi.org/10.1007/s00710-016-0485-8.CrossRefGoogle Scholar
  29. 29.
    Fuoss RM, Salymer IO, Wilson HS. Evaluation of rate constants from thermogravimetric data. J Polym Sci A. 1964;2:3147–51.Google Scholar
  30. 30.
    Kiliç Ö. Impact of physical properties and chemical composition of limestone on decomposition activation energy. Asian J Chem. 2013.  https://doi.org/10.14233/ajchem.2013.15172.CrossRefGoogle Scholar
  31. 31.
    Emmerich K. Thermal analysis in the characterization and processing of industrial minerals. In: Christidis GE, editor. Advances in the characterization of industrial minerals. EMU notes in mineralogy. London: Mineralogical Society; 2011. p. 129–70.CrossRefGoogle Scholar
  32. 32.
    Bish DL, Howard SA. Quantitative phase analysis using the Rietveld method. J Appl Cryst. 1988;21:86–91.CrossRefGoogle Scholar
  33. 33.
    Young RA. The Rietveld method. International Union of crystallography. Oxford: University Press; 1993.Google Scholar
  34. 34.
    Dunham RJ. Classification of carbonate rocks according to depositional texture. In: Ham WE, editor. Classification of carbonate rocks, vol. 1. Tulsa: AAPG Mem; 1962. p. 108–21.Google Scholar
  35. 35.
    Embry AF, Klovan JS. A late Devonian reef tract on northeastern Banks Island. NWT CSPG Bull. 1971;4:730–81.Google Scholar
  36. 36.
    Sibley DF, Gregg JM. Classification of dolomite rock textures. J Sediment Petrol. 1987;57(6):967–75.Google Scholar
  37. 37.
    Tucker M, Wright VP. Carbonate sedimentology. 1st ed. Oxford: Blackwell Science; 1990.CrossRefGoogle Scholar
  38. 38.
    Flügel E. Microfacies of carbonate rocks. Analysis, interpretation and application. 2nd ed. Berlin: Springer; 2010.Google Scholar
  39. 39.
    ISO 9277. Determination of the specific surface area of solids by gas adsorption—BET method. 2010. https://www.iso.org/standard/44941.html. Accessed 1 Oct 2018.
  40. 40.
    ASTM C25. Standard test methods for chemical analysis of limestone, quicklime, and hydrated lime. ASTM Book Stand. 2017;04(01):28–30.Google Scholar
  41. 41.
    ASTM C110. Standard test methods for physical testing of quicklime, hydrated lime, and limestone. ASTM Book Stand. 2016;04(01):1–20.Google Scholar
  42. 42.
    UNI-EN 459-2. Building lime—part 2: tests methods. CEN/TC 51; 2010. p. 1–16.Google Scholar
  43. 43.
    Schwarzkopf F. Lime burning technology—a manual for lime plant operators. 3rd ed. Van Saun: Svedala Industries Kennedy; 1994.Google Scholar
  44. 44.
    Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.CrossRefGoogle Scholar
  45. 45.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  46. 46.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. Phys Chem. 1966;70:487–523.Google Scholar
  47. 47.
    Commandré J-M, Salvador S, Nzihou A. Reactivity of laboratory and industrial limes. Chem Eng Res Des. 2007.  https://doi.org/10.1205/cherd06200.CrossRefGoogle Scholar
  48. 48.
    Wiese F, Wood CJ, Kaplan U. 20 years of event stratigraphy in NW Germany; advances and open questions. Acta Geol Pol. 2004;54(4):639–56.Google Scholar
  49. 49.
    Towadros EE. Geology of North Africa. London: CRC Press/Balkema; 2012. p. 487–8.Google Scholar
  50. 50.
    Lentini F, Carbone S. Geologia della Sicilia—geology of sicily. Mem Descr Carta Geol d’Ital. 2014;95:7–414.Google Scholar
  51. 51.
    Nolan SC, Skelton PW, Clissold BP, Smewing JD. Maastrichtian to early Tertiary stratigraphy and palaeogeography of the Central and Northern Oman. Geol Soc Lond Spec Publ. 1990.  https://doi.org/10.1144/GSL.SP.1992.049.01.31.CrossRefGoogle Scholar
  52. 52.
    Martire L, Clari P, Lozar F, Pavia G. The Rosso Ammonitico Veronese (Middle-Upper Jurassic of the Trento Plateau): a proposal of lithostratigraphic ordering and formalization. Riv Ital Paleontol Stratigr. 2006.  https://doi.org/10.13130/2039-4942/6338.CrossRefGoogle Scholar
  53. 53.
    Le Blanc J. A revised guide to the Cenozoic surface formations of Qatar, Middle East (excluding the islands). 2017. https://sites.google.com/site/leblancjacques/fossilhome. Accessed 8 June 2018.
  54. 54.
    Jeppsson L. The lower Wenlock Hangvar Formation—a sequence previously split between the Högklint and Slite beds (Silurian, Gotland, Sweden). GFF. 2008.  https://doi.org/10.1080/11035890801301031.CrossRefGoogle Scholar
  55. 55.
    Carmignani L, Meccheri M, Primavori P. Marbles and other ornamental stones from the Apuane Alps (northern Tuscany, Italy). G Geol Appl. 2005.  https://doi.org/10.1474/GGA.2005-01.0-23.0023.CrossRefGoogle Scholar
  56. 56.
    Ronchi P, Jadoul F, Ceriani A, Di Giulio A, Scotti P, Ortenzi A, Previde Massara E. Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy). Sedimentology. 2010.  https://doi.org/10.1111/j.1365-3091.2010.01174.x.CrossRefGoogle Scholar
  57. 57.
    Scandone P. Note Illustrative della Carta Geologica d’Italia alla scala 1:100.000. Fogli 199 e 210. Potenza e Lauria. Serv Geol d’It. 1971:1–71.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Cimprogetti S.R.L, Lime TechnologiesDalmineItaly
  2. 2.Physics and Earth Sciences DepartmentUniversity of FerraraFerraraItaly

Personalised recommendations