Advertisement

A novel β-nucleating agent for isotactic polypropylene

  • Chunmeng Pan
  • Wei Qin
  • Lan Chen
  • Zhong Xin
  • Shicheng Zhao
  • Chunlin Ye
Article

Abstract

A series of metal salts of 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid were synthesized, and their nucleation efficiency in isotactic polypropylene (iPP) was investigated. The results showed that potassium 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (OBCHE19) is an effective β-nucleating agent. Then, the effect of OBCHE19 concentration on the relative content of β-crystals (Kβ) and mechanical properties of iPP was investigated. The results indicated that the maximum Kβ reached 0.82 and impact strength increased by 125% compared to that of pure iPP when the content of OBCHE19 is 0.1 mass%. Furthermore, the non-isothermal crystallization kinetics and crystallization activation energy were investigated by the Caze method and Kissinger method, respectively.

Keywords

Isotactic polypropylene Nucleating agent OBCHED Crystallization Mechanical properties 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation of China (Grants 21476085 and 21606084), National Key R&D Program of China (2016YFB0302201) and the Fundamental Research Funds for the Central Universities (222201717025).

References

  1. 1.
    Jang GS, Cho WJ, Ha CS. Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J Polym Sci Part B Polym Phys. 2001;39(10):1001–16.CrossRefGoogle Scholar
  2. 2.
    Blomenhofer M, Ganzleben S, Hanft D, Schmidt H-W, Kristiansen M, Smith P, et al. “Designer” nucleating agents for polypropylene. Macromolecules. 2005;38(9):3688–95.CrossRefGoogle Scholar
  3. 3.
    Zhang X, Xie F, Pen Z, Zhang Y, Zhang Y, Zhou W. Effect of nucleating agent on the structure and properties of polypropylene/poly(ethylene–octene) blends. Eur Polym J. 2002;38(1):1–6.CrossRefGoogle Scholar
  4. 4.
    Wang W, Zhou S, Xin Z, Shi Y, Zhao S. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene. Front Chem Sci Eng. 2016;10(3):1–9.Google Scholar
  5. 5.
    Rungswang W, Thongsak K, Prasansuklarb A, Plailahan K, Saendee P, Rugmai S, et al. Effects of sodium salt and sorbitol-derivative nucleating agents on physical properties related to crystal structure and orientation of polypropylene. Ind Eng Chem Res. 2014;53(6):2331–9.CrossRefGoogle Scholar
  6. 6.
    Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128(2):925–35.CrossRefGoogle Scholar
  7. 7.
    Zhou P-Z, Zhang Y-F, Lin X-F. Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132(3):1845–52.CrossRefGoogle Scholar
  8. 8.
    Zhang YF, Hou HH, Guo LH. Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;131(2):1483–90.CrossRefGoogle Scholar
  9. 9.
    He B, Lin XF, Zhang YF. Effect of a novel compound nucleating agent calcium sulfate whisker/beta-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;132(2):1145–52.CrossRefGoogle Scholar
  10. 10.
    Long LJ, He WT, Li J, Qin SH, Yu J. Nucleation ability of nonmetallic organophosphate derivatives in isotactic polypropylene. J Therm Anal Calorim. 2017;127(3):2283–91.CrossRefGoogle Scholar
  11. 11.
    Marco C, Ellis G, Gómez M, Arribas J. Analysis of the dynamic crystallisation of isotactic polypropylene/α-nucleating agent systems by DSC. J Therm Anal Calorim. 2002;68(1):61–74.CrossRefGoogle Scholar
  12. 12.
    Dotson DL, Zhao X, Edward. Metal salts of hexahydrophthalic acid as nucleating additives for crystalline thermoplastics. US Patent 7,332,536. February 19, 2008.Google Scholar
  13. 13.
    Su Z, Dong M, Zhaoxia Guo A, Yu J. Study of polystyrene and acrylonitrile–styrene copolymer as special β-nucleating agents to induce the crystallization of isotactic polypropylene. Macromolecules. 2007;40(12):4217–24.CrossRefGoogle Scholar
  14. 14.
    Zhao S, Xu N, Zhong X, Jiang C. A novel highly efficient β-nucleating agent for isotactic polypropylene. J Appl Polym Sci. 2012;123(1):108–17.CrossRefGoogle Scholar
  15. 15.
    Mathieu C, Thierry A, Wittmann JC, Lotz B. Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci Part B Polym Phys. 2002;40(22):2504–15.CrossRefGoogle Scholar
  16. 16.
    Xian JM, Li MQ, Lin ZD, Deng SL. Crystallization and thermal behavior of recycled polypropylene composites containing nonmetallic printed circuit board powder and beta-nucleating agents. J Therm Anal Calorim. 2017;130(2):869–78.CrossRefGoogle Scholar
  17. 17.
    Varga J, Stoll K, Menyhárd A, Horváth Z. Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121(3):1469–80.CrossRefGoogle Scholar
  18. 18.
    Zhao S, Xin Z. Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci Part B Polym Phys. 2010;48(6):653–65.CrossRefGoogle Scholar
  19. 19.
    And JZ, Yang D, Thierry A, Wittmann JC, Lotz B. Isochiral form II of syndiotactic polypropylene produced by epitaxial crystallization. Macromolecules. 2001;34(18):6261–7.CrossRefGoogle Scholar
  20. 20.
    Menyhárd A, Varga J, Molnár G. Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83(3):625–30.CrossRefGoogle Scholar
  21. 21.
    Kang J, He JH, Chen ZF, Yu HY, Chen JY, Yang F, et al. Investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotube composites nucleated with beta-nucleating agent. J Therm Anal Calorim. 2015;119(3):1769–80.CrossRefGoogle Scholar
  22. 22.
    Cao L, Su DF, Su ZQ, Chen XN. Morphology, crystallization behavior and tensile properties of beta-nucleated isotactic polypropylene fibrous membranes prepared by melt electrospinning. Chin J Polym Sci. 2014;32(9):1167–75.CrossRefGoogle Scholar
  23. 23.
    Luo F, Wang K, Ning NY, Geng CZ, Deng H, Chen F, et al. Dependence of mechanical properties on beta-form content and crystalline morphology for beta-nucleated isotactic polypropylene. Polym Adv Technol. 2011;22(12):2044–54.CrossRefGoogle Scholar
  24. 24.
    Feng J, Chen M. Effects of La3+-containing additive on crystalline characteristics of isotactic polypropylene. Polym Int. 2003;52(1):42–5.CrossRefGoogle Scholar
  25. 25.
    Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci. 2015;74(10):2357–68.CrossRefGoogle Scholar
  26. 26.
    Zhao S, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008;49(11):2745–54.CrossRefGoogle Scholar
  27. 27.
    Cao LM, Zheng AX, Cao XW, Yuan DS, Xu CH, Chen YK. Morphology and non-isothermal crystallization of dynamically vulcanized PP/EPDM blends in situ compatibilized via magnesium dimethacrylate. Polym Test. 2017;62:68–78.CrossRefGoogle Scholar
  28. 28.
    Ma Y, Xin M, Xu K, Chen M. A novel β-nucleating agent for isotactic polypropylene. Polym Int. 2013;62(5):744–50.CrossRefGoogle Scholar
  29. 29.
    Zhou M, Li X, Jin M, Xia C, Shen K, Zhang J. Simultaneously improving the tensile and impact properties of isotactic polypropylene with the cooperation of co-PP and β-nucleating agent through pressure vibration injection molding. Chin J Polym Sci. 2016;34(8):1001–13.CrossRefGoogle Scholar
  30. 30.
    Dou Q. A comparison of the effects of calcium glutarate and pimelate on the formation of Î2 crystalline form in isotactic poly(propylene). J Macromol Sci Part B. 2007;47(1):127–38.CrossRefGoogle Scholar
  31. 31.
    Dou Q. Effect of metallic salts of pimelic acid and crystallization temperatures on the formation of Î2 crystalline form in isotactic poly(propylene). J Macromol Sci Part B. 2007;46(6):1063–80.CrossRefGoogle Scholar
  32. 32.
    Dou Q. Effect of calcium salts of glutaric acid and pimelic acid on the formation of Î2 crystalline form in isotactic polypropylene. Adv Mater Res. 2008;47(9):851–7.Google Scholar
  33. 33.
    Dou Q, Lu Q-L, Li H-D. Effect of metallic salts of malonic acid on the formation of Î2 crystalline form in isotactic polypropylene. J Macromol Sci Part B. 2008;47(5):900–12.CrossRefGoogle Scholar
  34. 34.
    Varga J, Menyhárd A. Crystallization, melting and structure of polypropylene/poly(vinylidene- fluoride) blends. J Therm Anal Calorim. 2003;73(3):735–43.CrossRefGoogle Scholar
  35. 35.
    Cai Z, Zhao S, Shen B, Xin Z. The effect of bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate on the mechanical properties and crystallization behaviors of isotactic polypropylene. J Appl Polym Sci. 2010;116(2):792–800.Google Scholar
  36. 36.
    Zhao S, Liu K, Zhou S, Shi Y, Xin Z. A novel self-dispersed β nucleating agent for isotactic polypropylene and its unique nucleation behavior and mechanism. Polymer. 2017;132:69–78.CrossRefGoogle Scholar
  37. 37.
    Zhao S, Xin Z. Crystallization kinetics of isotactic polypropylene nucleated with organic dicarboxylic acid salts. J Appl Polym Sci. 2009;112(3):1471–80.CrossRefGoogle Scholar
  38. 38.
    Yang Y, Xin Z, Zhao S, Shi Y, Zhou S, Zhou J, et al. Nucleation effects of zinc adipate as β-nucleating agent in ethylene–propylene block copolymerized polypropylene. J Polym Res. 2017;24(9):143.CrossRefGoogle Scholar
  39. 39.
    Lin ZD, Chen C, Guan ZX, Li MQ, Guo GH, Xian JM, et al. The beta-nucleated ternary composites of polypropylene/nano-CaCO3/short poly(ethylene–terephthalate) fiber. J Therm Anal Calorim. 2013;114(1):229–37.CrossRefGoogle Scholar
  40. 40.
    Mukherjee S, Brooks WLA, Dai YQ, Sumerlin BS. Doubly-dynamic-covalent polymers composed of oxime and oxanorbornene links. Polym Chem. 2016;7(10):1971–8.CrossRefGoogle Scholar
  41. 41.
    Thiyagarajan S, Genuino HC, Sliwa M, van der Waal JC, de Jong E, van Haveren J, et al. Substituted phthalic anhydrides from biobased furanics: a new approach to renewable aromatics. Chemsuschem. 2015;8(18):3052–6.CrossRefGoogle Scholar
  42. 42.
    Jones AT, Aizlewood JM, Beckett DR. Crystalline forms of isotactic polypropylene. Macromol Chem Phys. 2010;75(1):134–58.CrossRefGoogle Scholar
  43. 43.
    Dai X, Wang ZX, Zhang XH, Xu S, Zhang SX, Cao M, et al. Preparation and crystallization of isotactic polypropylene composites filled by titanium dioxide-supported montmorillonite with a beta-nucleating surface. J Therm Anal Calorim. 2018;132(2):947–53.CrossRefGoogle Scholar
  44. 44.
    Triantou MI, Tarantili PA. The effect of organoclay and graphene on the crystallization of PP in ABS/PP blends. J Therm Anal Calorim. 2017;129(2):743–54.CrossRefGoogle Scholar
  45. 45.
    Perez CJ, Alvarez VA. Non-isothermal crystallization of biodegradable polymer (MaterBi)/polyolefin (PP)/hemp fibres ternary composites. J Therm Anal Calorim. 2015;120(2):1445–55.CrossRefGoogle Scholar
  46. 46.
    Zhang Y-F, Li D, Chen Q-J. Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci. 2017;295(10):1973–82.CrossRefGoogle Scholar
  47. 47.
    Cheng HKF, Sahoo NG, Lu XH, Li L. Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim. 2012;109(1):17–25.CrossRefGoogle Scholar
  48. 48.
    Ding Q, Zhang ZS, Wang CG, Jiang J, Li G, Mai KC. Non-isothermal crystallization kinetics and morphology of wollastonite-filled beta-isotactic polypropylene composites. J Therm Anal Calorim. 2014;115(1):675–88.CrossRefGoogle Scholar
  49. 49.
    Treviño-Quintanilla CD, Krishnamoorti R, Bonilla-Ríos J. Flash DSC crystallization study of blown film grade bimodal high density polyethylene (HDPE) resins. Part 2. Non-isothermal kinetics. J Polym Sci Part B Polym Phys. 2017;55(24):1822–7.CrossRefGoogle Scholar
  50. 50.
    Yang R, Ding L, Zhang X, Li J. Nonisothermal crystallization, melting behaviors, and mechanical properties of isotactic polypropylene nucleated with a liquid crystalline polymer. Ind Eng Chem Res. 2018;57(6):2083–93.CrossRefGoogle Scholar
  51. 51.
    Zhao S, Zhong X, Jing Z, Han T. Combined effect of organic phosphate sodium and nanoclay on the mechanical properties and crystallization behavior of isotactic polypropylene. J Appl Polym Sci. 2012;123(1):617–26.CrossRefGoogle Scholar
  52. 52.
    Lamberti G, Titomanlio G. Crystallization kinetics of iPP. Model and experiments. Polym Bull. 2001;46(2–3):231–8.CrossRefGoogle Scholar
  53. 53.
    Zhang YF, Chen H, Liu BB, Gu YH, Li XX. Isothermal and non-isothermal crystallization of isotactic polypropylene nucleated with 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide). Thermochim Acta. 2014;590:226–31.CrossRefGoogle Scholar
  54. 54.
    Molnar J, Menyhard A. Separation of simultaneously developing polymorphic modifications by stepwise crystallization technique in non-isothermal calorimetric experiments. J Therm Anal Calorim. 2016;124(3):1463–9.CrossRefGoogle Scholar
  55. 55.
    Tranchida D, Gloger D, Gahleitner M. A critical approach to the Kissinger analysis for studying non-isothermal crystallization of polymers Limits and possibilities. J Therm Anal Calorim. 2017;129(2):1057–64.CrossRefGoogle Scholar
  56. 56.
    Cao YW, Feng JC, Wu PY. DSC and morphological studies on the crystallization behavior of beta-nucleated isotactic polypropylene composites filled with Kevlar fibers. J Therm Anal Calorim. 2011;103(1):339–45.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Chunmeng Pan
    • 1
  • Wei Qin
    • 1
  • Lan Chen
    • 1
  • Zhong Xin
    • 1
  • Shicheng Zhao
    • 1
  • Chunlin Ye
    • 2
  1. 1.Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Shanghai Research Institute of Chemical IndustryShanghaiPeople’s Republic of China

Personalised recommendations