Advertisement

Effect of manganese substitution on the crystal structure and decomposition kinetics of siderite

  • Haibo Liu
  • Daobing Shu
  • Fuwei Sun
  • Qian Li
  • Tianhu Chen
  • Bobo Xing
  • Dong Chen
  • Chengsong Qing
Article

Abstract

In this study, Mn-substituted siderites with different substitution amounts were prepared and characterized by using XRD (X-ray diffraction), TEM (transmission electron microscope), TG and DTG (thermogravimetry and derivative thermogravimetry) and Raman spectroscopy. The effect of Mn substitution on the crystal structure of siderite and thermal decomposition processes of synthetic siderite was investigated. The substitution of Mn for Fe in the crystal structure of siderite resulted in an increase in a and c dimensions from 4.702 and 15.374 to 4.718 and 15.43 Å as the substitution amount increased from 0 to 7.4%, respectively. The substitution of Mn also decreased the crystallinity of siderite. The thermal decomposition of synthetic siderite took place at approximately 350 °C. However, the substitution of Mn for Fe increased the decomposition temperature and improved the activation energy (Ed) values from 126.3, 155.7, 156.8 to 164.5, 167.6, 170.3 kJ mol−1 when Mn substitution increased from 0 to 7.4 mol%.

Keywords

Siderite Mn substitution Crystal structure Thermal stability Decomposition kinetics 

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 41772038, 41472047 and 41402030), Natural Science Foundation of Anhui Province (1708085MD87) and Fundamental Research Funds for the Central Universities (JZ2017HGTB0196) is acknowledged.

References

  1. 1.
    Fisher QJ, Raiswell R, Marshall JD. Siderite concretions from nonmarine shales (Westphalian A) of the Pennines, England; controls on their growth and composition. J Sediment Res. 1998;68(5):1034–45.CrossRefGoogle Scholar
  2. 2.
    Jagtap SB, Pande AR, Gokarn AN. Kinetics of thermal decomposition of siderite: effect of particle size ☆. Int J Miner Process. 1992;36(1):113–24.CrossRefGoogle Scholar
  3. 3.
    Zakharov VY, Adonyi Z. Thermal decomposition kinetics of siderite. Thermochim Acta. 1986;102(86):101–7.CrossRefGoogle Scholar
  4. 4.
    Dubrawski JV. Thermal decomposition of some siderite-magnesite minerals using DSC. J Therm Anal Calorim. 1991;37(6):1213–21.CrossRefGoogle Scholar
  5. 5.
    Criado JM, Gonzalez M, Macias M. Influence of grinding on both the stability and thermal decomposition mechanism of siderite. Thermochim Acta. 1988;135(10):219–23.CrossRefGoogle Scholar
  6. 6.
    Pang YL, Xiao GX, Jiu SW. Study on thermal decomposition kinetics of siderite. J Xian Univ Archit Technol. 2007;39(1):136–44.Google Scholar
  7. 7.
    Gallagher PK, Warne SSJ. Thermomagnetometry and thermal decomposition of siderite. Thermochim Acta. 1981;43(3):253–67.CrossRefGoogle Scholar
  8. 8.
    Patterson JH, Hurst HJ, Levy JH. Relevance of carbonate minerals in the processing of Australian Tertiary oil shales ☆. Fuel. 1991;70(11):1252–9.CrossRefGoogle Scholar
  9. 9.
    Xing B, Chen T, Chengsong Q, Liu H, Xie Q, Xie J. Structural characteristic of natural siderite during thermal treatment. J Chin Ceram Soc. 2016.Google Scholar
  10. 10.
    Feng Z, Yu Y, Liu G, Chen W. Kinetics of the thermal decomposition of Wangjiatan siderite. J Wuhan Univ Technol Mater Sci Ed. 2011;26(3):523–6.CrossRefGoogle Scholar
  11. 11.
    Gotor FJ, Macías M, Ortega A, Criado JM. Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples. Phys Chem Miner. 2000;27(27):495–503.CrossRefGoogle Scholar
  12. 12.
    Hurst HJ, Levy JH, Patterson JH. Siderite decomposition in retorting atmospheres ☆. Fuel. 1993;72(6):885–90.CrossRefGoogle Scholar
  13. 13.
    Dhupe AP, Gokarn AN. Studies in the thermal decomposition of natural siderites in the presence of air ☆. Int J Miner Process. 1990;28(3–4):209–20.CrossRefGoogle Scholar
  14. 14.
    Alkaç D, Atalay Ü. Kinetics of thermal decomposition of Hekimhan–Deveci siderite ore samples. Int J Miner Process. 2008;87(3–4):120–8.CrossRefGoogle Scholar
  15. 15.
    Ruan HD. Dehydroxylation of aluminous goethite: unit cell dimensions, crystal size and surface area. Clays Clay Miner. 1995;43(2):196–211.CrossRefGoogle Scholar
  16. 16.
    Chai L, Navrotsky A. Synthesis, characterization, and enthalpy of mixing of the (Fe, Mg)C03 solid solution. Geochim Cosmochim Acta. 1996;60(22):4377–83.CrossRefGoogle Scholar
  17. 17.
    Bischoff WD, Sharma SK, Mackenzie FT. Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Plast Reconstr Surg. 1985;112(4):489–94.Google Scholar
  18. 18.
    Boulard E, Guyot F, Fiquet G. The influence on Fe content on Raman spectra and unit cell parameters of magnesite–siderite solid solutions. Phys Chem Miner. 2012;39(3):239–46.CrossRefGoogle Scholar
  19. 19.
    Spivak A, Solopova N, Cerantola V, Bykova E, Zakharchenko E, Dubrovinsky L, et al. Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys Chem Miner. 2014;41(8):633–8.CrossRefGoogle Scholar
  20. 20.
    Rutt HN, Nicola JH. Raman spectra of carbonates of calcite structure. J Phys C Solid State Phys. 1974;7(24):4522–8.CrossRefGoogle Scholar
  21. 21.
    Feng ZL, Yu YF, Liu GF, Chen W. Thermal decomposition kinetics of siderite in nitrogen. J Wuhan Univ Technol. 2009;31(17):11–4.Google Scholar
  22. 22.
    Isambert A, Valet JP, Gloter A, Guyot F. Stable Mn-magnetite derived from Mn-siderite by heating in air. J Geophys Res Solid Earth. 2003;108(B6):2283–91.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Haibo Liu
    • 1
  • Daobing Shu
    • 1
  • Fuwei Sun
    • 1
  • Qian Li
    • 1
  • Tianhu Chen
    • 1
  • Bobo Xing
    • 1
  • Dong Chen
    • 1
  • Chengsong Qing
    • 1
  1. 1.Laboratory for Nanominerals and Environmental Material, School of Resources and Environmental EngineeringHefei University of TechnologyHefeiChina

Personalised recommendations