Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1069–1077 | Cite as

Thermal properties of spray-dried cellulose nanofibril-reinforced polypropylene composites from extrusion-based additive manufacturing

  • Lu WangEmail author
  • Janice Palmer
  • Mehdi Tajvidi
  • Douglas J. Gardner
  • Yousoo Han


Polypropylene block copolymer (PPco) is easier to process in extrusion-based additive manufacturing compared to isotactic PP homopolymer because it shrinks and warps less during printing. This study investigated the thermal properties of PPco and spray-dried CNF (SDCNF)-PPco composite pellet formulations. Thermogravimetric analysis data showed that the addition of SDCNF lowered the thermal degradation onset temperature and increased the residual mass content (at 450 °C) of PPco pellets. The peak degradation temperatures of SDCNF and PPco remained the same. The peak crystallization temperature and relative crystallinity of PPco were increased by the addition of SDCNF and MAPP. The peak melting temperature of PPco was not significantly changed. Printed specimens showed three melting peaks (β, β′ and α crystals) while injection molded PPco only showed one (α crystal) melting peak. Dynamic mechanical analysis results showed that the heat deflection temperatures of printed SDCNF-PPco composites were higher than injection molded PPco. SEM micrographs showed that the addition of SDCNF increased the number of voids inside the printed parts.


Cellulose nanofibrils Composites Fused deposition modeling (FDM) Crystal form Heat deflection temperature (HDT) 



Funding was provided in part by the National Science Foundation REU Project No. 1461116, the Maine Agricultural and Forest Experiment Station (MAFES) project ME0-M-8-00527-13 and the USDA ARS Forest Products Research Agreement 58-0202-4-003. The authors thank J. Elliott Sanders at the University of Maine for preparing the pellets and composites for analysis.


  1. 1.
    Wendel B, Rietzel D, Kühnlein F, Feulner R, Hülder G, Schmachtenberg E. Additive processing of polymers. Macromol Mater Eng. 2008;293:799–809.CrossRefGoogle Scholar
  2. 2.
    Wang L, Gardner DJ, Bousfield DW. Cellulose nanofibril-reinforced polypropylene composites for material extrusion: rheological properties. Polym Eng Sci. 2017. Scholar
  3. 3.
    Wang L, Gardner DJ. Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer. 2017;24:74–80.CrossRefGoogle Scholar
  4. 4.
    Nandi S, Ghosh AK. Crystallization kinetics of impact modified polypropylene. J Polym Res. 2007;14:387–96.CrossRefGoogle Scholar
  5. 5.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94.CrossRefGoogle Scholar
  6. 6.
    Wang L, Sanders JE, Gardner DJ, Han Y. In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Ind Crops Prod. 2016;93:129–35.CrossRefGoogle Scholar
  7. 7.
    Gardner DJ, Han Y, Wang L. Wood–plastic composite technology. Curr For Rep. 2015;1(3):139–50. Scholar
  8. 8.
    Wang L, Roach AW, Gardner DJ, Han Y. Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils. Cellulose. 2018;25(1):439–48. Scholar
  9. 9.
    Sun L, Wu Q, Xie Y, Song K, Lee S, Wang Q. Thermal decomposition of fire-retarded wood flour/polypropylene composites. J Therm Anal Calorim. 2016;123(1):309–18.CrossRefGoogle Scholar
  10. 10.
    Tajvidi M, Takemura A. Thermal degradation of natural fiber-reinforced polypropylene composites. J Thermoplast Compos Mater. 2010;23:281–98.CrossRefGoogle Scholar
  11. 11.
    Zhao P, Guo C, Li L. Flame retardancy and thermal degradation properties of polypropylene/wood flour composite modified with aluminum hypophosphite/melamine cyanurate. J Therm Anal Calorim. 2018. Scholar
  12. 12.
    Tajvidi M, Sharma AM, Simon LC. Thermal transitions and temperature dependent mechanical behavior of wheat straw/talc isotactic/impact modified polypropylene composites. J Reinf Plast Compos. 2013;32:1430–43.CrossRefGoogle Scholar
  13. 13.
    Guo B, Zhang T, Zhang W, Dou Y. Influence of surface flame-retardant layer containing ammonium polyphosphate and expandable graphite on the performance of jute/polypropylene composites. J Therm Anal Calorim. 2018. Scholar
  14. 14.
    Ljungberg N, Cavaillé JY, Heux L. Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer. 2006;47:6285–92.CrossRefGoogle Scholar
  15. 15.
    Panaitescu DM, Donescu D, Bercu C, Vuluga DM, Iorga M, Ghiurea M. Polymer composites with cellulose microfibrils. Polym Eng Sci. 2007;47:1228–34.CrossRefGoogle Scholar
  16. 16.
    Nagalakshmaiah M, El Kissi N, Dufresne A. Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces. 2016;8:8755–64.CrossRefGoogle Scholar
  17. 17.
    Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A. Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci. 2012;125:2882–9.CrossRefGoogle Scholar
  18. 18.
    Hassan ML, Mathew AP, Hassan EA, Fadel SM, Oksman K. Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J Reinf Plast Compos. 2014;33:26–36.CrossRefGoogle Scholar
  19. 19.
    Yang HS, Kiziltas A, Gardner DJ. Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim. 2013;113:673–82.CrossRefGoogle Scholar
  20. 20.
    Khoshkava V, Kamal MR. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. ACS Appl Mater Interfaces. 2014;6:8146–57.CrossRefGoogle Scholar
  21. 21.
    González-González VA, Neira-Velázquez G, Angulo-Sánchez JL. Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym Degrad Stab. 1998;60:33–42.CrossRefGoogle Scholar
  22. 22.
    Hermanová S, Tocháček J, Jančář J, Kalfus J. Effect of multiple extrusion on molecular structure of polypropylene impact copolymer. Polym Degrad Stab. 2009;94:1722–7.CrossRefGoogle Scholar
  23. 23.
    Turner BN, Strong R, Gold SA. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J. 2014;20:192–204.CrossRefGoogle Scholar
  24. 24.
    Seo Y, Kim J, Kim KU, Kim YC. Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer. 2000;41:2639–46.CrossRefGoogle Scholar
  25. 25.
    Wang L, Gramlich WM, Gardner DJ, Han Y, Tajvidi M. Spray-dried cellulose nanofibril-reinforced polypropylene composites for extrusion-based additive manufacturing: nonisothermal crystallization kinetics and thermal expansion. J Compos Sci. 2018;2(1):7. Scholar
  26. 26.
    Wang L, Gramlich WM, Gardner DJ. Improving the impact strength of poly (lactic acid)(PLA) in fused layer modeling (FLM). Polymer. 2017;114:242–8.CrossRefGoogle Scholar
  27. 27.
    Tordjeman P, Robert C, Marin G, Gerard P. The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur Phys J E Soft Matter. 2001;4:459–65.CrossRefGoogle Scholar
  28. 28.
    Papageorgiou DG, Chrissafis K, Bikiaris DN. β-nucleated polypropylene: processing, properties and nanocomposites. Polym Rev. 2015;55:596–629.CrossRefGoogle Scholar
  29. 29.
    Fujiwara Y. Das doppelschmelzverhalten derb-Phase des isotaktischen polypropylenes. Colloid Polym Sci. 1975;253:273–82.CrossRefGoogle Scholar
  30. 30.
    Li JX, Cheung WL, Jia D. A study on the heat of fusion of β-polypropylene. Polymer. 1999;40:1219–11222.CrossRefGoogle Scholar
  31. 31.
    Wang L, Sanders JE, Gardner DJ, Han Y. Effect of fused deposition modeling process parameters on the mechanical properties of a filled polypropylene. Prog Addit Manuf. 2018. Scholar
  32. 32.
    Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci B. 2002;41(4–6):1121–71.CrossRefGoogle Scholar
  33. 33.
    Landel RF, Nielsen LE. Mechanical properties of polymers and composites. Amsterdam: CRC Press; 1993.Google Scholar
  34. 34.
    Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK. Mechanical, thermal, and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana fiber-reinforced polypropylene composites. J Appl Polym Sci. 2010;117:1731–40.Google Scholar
  35. 35.
    Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK. Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci. 2011;119:1619–26.CrossRefGoogle Scholar
  36. 36.
    Ning F, Cong W, Qiu J, Wei J, Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng. 2015;80:369–78.CrossRefGoogle Scholar
  37. 37.
    Zafar MT, Zarrinbakhsh N, Mohanty AK, Misra M, Maiti SN, Ghosh AK. Biocomposites based on poly (lactic acid)/willow-fiber and their injection moulded microcellular foams. Expr Polym Lett. 2016;10:176–86.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Forest ResourcesUniversity of MaineOronoUSA
  2. 2.Advanced Structures and Composites CenterUniversity of MaineOronoUSA
  3. 3.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSt. PaulUSA

Personalised recommendations