Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1217–1225 | Cite as

Preparation and characterization of form-stable tetradecanol–palmitic acid expanded perlite composites containing carbon fiber for thermal energy storage

  • Fei Cheng
  • Yaoting Huang
  • Ruilong Wen
  • Xiaoguang Zhang
  • Zhaohui HuangEmail author
  • Minghao Fang
  • Yan’gai Liu
  • Xiaowen Wu
  • Xin Min
Article
  • 45 Downloads

Abstract

In this study, tetradecanol–palmitic acid/expanded perlite composites containing carbon fiber (TD-PA/EP-CF CPCMs) were prepared by a vacuum impregnation method. Binary eutectic mixtures of PA and TD were utilized as thermal energy storage material in the composites, where EP behaved as supporting material. X-ray diffraction demonstrated that crystal structures of PA, TD, EP, and CF remained unchanged, confirming no chemical interactions among raw materials besides physical combinations. The microstructures indicated that TD-PA was sufficiently absorbed into EP porous structure, forming no leakage even in molten state. Differential scanning calorimetry estimated the melting temperature of TD-PA/EP-CF CPCM to 33.6 °C, with high phase change latent heat (PCLH) of 138.3 kJ kg−1. Also, the freezing temperature was estimated at 29.7 °C, with PCLH of 137.5 kJ kg−1. The thermal cycling measurements showed that PCM composite had adequate stability even after 200 melting/freezing cycles. Moreover, the thermal conductivity enhanced from 0.48 to 1.081 W m−1 K−1 in the presence of CF. Overall, the proposed CPCMs look promising materials for future applications due to their appropriate phase change temperature, elevated PCLH, and better thermal stability.

Keywords

Energy storage Palmitic acid Binary eutectic mixture Carbon fiber Thermal stability Thermal conductivity 

Notes

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities for financial support (Grant Nos. 2652017361), the National Key Laboratory Open Fund (Grant Nos. 10042015003) and the National Natural Science Foundations of China (Grant Nos. 51472222, 51872268).

References

  1. 1.
    Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy. 2014;114:632–43.CrossRefGoogle Scholar
  2. 2.
    Huang J, Wang T, Zhu P, Xiao J. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim Acta. 2013;557:1–6.CrossRefGoogle Scholar
  3. 3.
    Wen RL, Huang ZH, Huang YT, Zhang XG, Min X, Fang MH, Liu YG, Wu XW. Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials. Energy Build. 2016;116:677–83.CrossRefGoogle Scholar
  4. 4.
    Zhang XG, Liu HT, Huang ZH, et al. Preparation and characterization of the properties of polyethylene glycol@Si3N4 nanowires as phase-change materials. Chem Eng J. 2016;301:229–37.CrossRefGoogle Scholar
  5. 5.
    Cheng F, Wen RL, Huang ZH, Fang MH, Liu YG, Wu XW, Min X. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage. Appl Therm Eng. 2017;120:107–14.CrossRefGoogle Scholar
  6. 6.
    Yang D, Shi S, Xiong L, et al. Paraffin/palygorskite composite phase change materials for thermal energy storage. Sol Energy Mater Sol Cells. 2016;144:228–34.CrossRefGoogle Scholar
  7. 7.
    Chen Z, Cao L, Fang G, Shan F. Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials. Nanoscale Microscale Thermophys Eng. 2013;17(2):112–23.CrossRefGoogle Scholar
  8. 8.
    Fauzi H, Metselaar HSC, Mahlia TMI, et al. Preparation and thermal characteristics of eutectic fatty acids/Shorea javanica composite for thermal energy storage. Appl Therm Eng. 2016;100:62–7.CrossRefGoogle Scholar
  9. 9.
    Fu X, Liu Z, Wu B, et al. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim. 2016;123(2):1173–81.CrossRefGoogle Scholar
  10. 10.
    Sarı A, Alkan C, Biçer A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid–solid phase change materials for thermal energy storage. Mater Chem Phys. 2012;133(1):87–94.CrossRefGoogle Scholar
  11. 11.
    Wu Y, Wang T. The dependence of phase change enthalpy on the pore structure and interfacial groups in hydrated salts/silica composites via sol-gel. J Colloid Interface Sci. 2015;448:100–5.CrossRefGoogle Scholar
  12. 12.
    Mehrali M, Latibari ST, Mehrali M, Mahlia TMI, Sadeghinezhad E, Metselaara HSC. Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage. Appl Energy. 2014;135:339–49.CrossRefGoogle Scholar
  13. 13.
    Zhang N, Yuan YP, Du YX, Cao XY, Yuan YG. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage. Energy. 2014;78:950–6.CrossRefGoogle Scholar
  14. 14.
    Silakhoria M, Metselaara HSC, Mahliab TMI, Fauzia H, Baradarana S, Naghavia MS. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage. Energy Convers Manag. 2014;80:491–7.CrossRefGoogle Scholar
  15. 15.
    Yuan YP, Zhang N, Li TY, et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study. Energy. 2016;97:488–97.CrossRefGoogle Scholar
  16. 16.
    Zhang H, Gao XN, Chen CX, et al. A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos Part A Appl Sci Manuf. 2016;87:138–45.CrossRefGoogle Scholar
  17. 17.
    Li M, Wu ZS, Kao HT. Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Appl Energy. 2011;88(9):3125–32.CrossRefGoogle Scholar
  18. 18.
    Zeng JL, Gan J, Zhu FR, Yu SB, Xiao ZL, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2014;127:122–8.CrossRefGoogle Scholar
  19. 19.
    Zuo JG, Li WZ, Weng LD. Thermal properties of lauric acid/1-tetradecanol binary system for energy storage. Appl Therm Eng. 2011;31:1352–5.CrossRefGoogle Scholar
  20. 20.
    Sengul O, Azizi S, Karaosmanoglu F, Tasdemir MA. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 2011;43(2):671–6.CrossRefGoogle Scholar
  21. 21.
    Karaipeklin A, Sarı A. Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy. 2008;33(12):2599–605.CrossRefGoogle Scholar
  22. 22.
    Sarı A, Karaipeklin A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys. 2008;109(2):459–64.CrossRefGoogle Scholar
  23. 23.
    Sarı A, Karaipeklin A, Alkan C. Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J. 2009;155(3):899–904.CrossRefGoogle Scholar
  24. 24.
    Latibari ST, Mehrali M, Mahlia TMI, Metselaar HSC. Fabrication and performances of microencapsulated palmitic acid with enhanced thermal properties. Energy Fuels. 2015;29(2):1010–8.CrossRefGoogle Scholar
  25. 25.
    Karaipekli A, Bicer A, Sari A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81.CrossRefGoogle Scholar
  26. 26.
    Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC. Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM). Appl Therm Eng. 2016;99:1254–62.CrossRefGoogle Scholar
  27. 27.
    Zhang JW, Guan XM, Song XX, Hou HH, Yang ZP, Zhu JP. Preparation and properties of gypsum based energy storage materials with capric acid–palmitic acid/expanded perlite composite PCM. Energy Build. 2015;92:155–60.CrossRefGoogle Scholar
  28. 28.
    Zhang N, Yuan YP, Yuan YG, Li TY, Cao XL. Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: preparation and thermal properties. Energy Build. 2014;82:505–11.CrossRefGoogle Scholar
  29. 29.
    Lu ZY, Zhang JR, Sun GX, Xu BW, Li ZJ, Gong CC. Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique. Energy. 2015;82:43–53.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of Geosciences (Beijing)BeijingPeople’s Republic of China
  2. 2.School of ScienceBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China

Personalised recommendations