Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2107–2113 | Cite as

Pyrolysis characteristic study on seat hard materials of China’s high-speed train

  • Li Li
  • Lingling Wei
  • Yonggang Liu
  • Changhai Li
  • Yanming Ding
  • Shouxiang LuEmail author


In order to avoid and prevent the fire accident happened in China’s high-speed trains, the pyrolysis behaviors of two typical combustible hard materials used in the train’s chairs were investigated based on the thermogravimetric analysis. The experiments with polycarbonate (PC) and fiberglass reinforced plastic (FRP) were conducted over a wider heating rate range from 20 to 80 K min−1. Only one peak appeared in the mass loss rate of PC but three regions for FRP pyrolysis. The pyrolysis of PC showed a far higher starting temperature and four times mass loss rate peak value compared with FRP. Three common model-free methods (Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Kissinger methods) were applied to estimate the kinetic parameters at different conversion rates. The existence of three regions for FRP pyrolysis could be attributed to three different reactions according to the various activation energy values. The average activation energy of PC was about 206.49 kJ mol−1, while the various energy values for FRP were 108 kJ mol−1, 125 kJ mol−1 and 165 kJ mol−1 for the three regions, respectively. During the whole pyrolysis process, the activation energy of PC was always higher than that of FRP.


Polycarbonate Fiberglass reinforced plastic Pyrolysis Thermogravimetry 



The authors would like to acknowledge financial support sponsored by National Natural Science Foundation of China (No. 51806202), National Key Research and Development Program of China (No. 2016YFB1200505) and Natural Science Foundation of Hubei Province of China (No. 2018CFB352).


  1. 1.
    China Railway High-speed. Accessed 19 Aug 18.
  2. 2.
    France’s High Speed Train Catches Fire Near Paris. Accessed 19 Aug 18.
  3. 3.
    Zhang X, Zhang T, Li C, Wang H, Chen X, Lu S. Experimental study of commercial flame-retardant polycarbonate under external heat flux. J Therm Anal Calorim. 2018;131(2):1463–70.CrossRefGoogle Scholar
  4. 4.
    Zhang X, Zhao Y, Zhang T, Ding Z, Li C, Lu S. Characterization of thermal decomposition and combustion for commercial flame-retardant rubber floor cloth in TG–FTIR and FPA. J Therm Anal Calorim. 2018. Scholar
  5. 5.
    Wang G, Li W, Li B, Chen H. TG study on pyrolysis of biomass and its three components under syngas. Fuel. 2008;87(4):552–8.CrossRefGoogle Scholar
  6. 6.
    Liang J, Wang B, Zhu L, Wang H, Li C, Lu S. Pyrolysis characteristic study on seat cushion materials of China’s high-speed train. J Therm Anal Calorim. 2017;130(3):2331–9.CrossRefGoogle Scholar
  7. 7.
    Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.CrossRefGoogle Scholar
  8. 8.
    Chen R, Lu S, Li C, Ding Y, Zhang B, Lo S. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene–propylene–diene monomer (EPDM) rubber. J Therm Anal Calorim. 2016;123(1):545–56.CrossRefGoogle Scholar
  9. 9.
    Chen R, Lu S, Li C, Li M, Lo S. Characterization of thermal decomposition behavior of commercial flame-retardant ethylene–propylene–diene monomer (EPDM) rubber. J Therm Anal Calorim. 2015;122(1):449–61.CrossRefGoogle Scholar
  10. 10.
    Liu H, Wang C, Zhao W, Yang S, Hou X. Pyrolysis characteristics and kinetic modeling of Artemisia apiacea by thermogravimetric analysis. J Therm Anal Calorim. 2018;131(2):1783–92.CrossRefGoogle Scholar
  11. 11.
    Deng J, Zhao J-Y, Xiao Y, Zhang Y-N, Huang A-C, Shu C-M. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. J Therm Anal Calorim. 2017;129(3):1779–86.CrossRefGoogle Scholar
  12. 12.
    Ding Y, Ezekoye OA, Lu S, Wang C, Zhou R. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Convers Manag. 2017;132:102–9.CrossRefGoogle Scholar
  13. 13.
    Shnawa HA. Thermal stabilization of polyvinyl chloride with traditional and naturally derived antioxidant and thermal stabilizer synthesized from tannins. J Therm Anal Calorim. 2017;129(2):789–99.CrossRefGoogle Scholar
  14. 14.
    Liu Q, Nie W, Hua Y, Peng H, Liu Z. The effects of the installation position of a multi-radial swirling air-curtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face: a case study. Powder Technol. 2018;329:371–85.CrossRefGoogle Scholar
  15. 15.
    Nie W, Wei W, Cai P, Liu Z, Liu Q, Ma H, et al. Simulation experiments on the controllability of dust diffusion by means of multi-radial vortex airflow. Adv Powder Technol. 2018;29(3):835–47.CrossRefGoogle Scholar
  16. 16.
    Wang H, Nie W, Cheng W, Liu Q, Jin H. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully-mechanized working face. Adv Powder Technol. 2018;29(2):230–44.CrossRefGoogle Scholar
  17. 17.
    Opfermann J, Kaisersberger E, Flammersheim H. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391(1):119–27.CrossRefGoogle Scholar
  18. 18.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  19. 19.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  20. 20.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.CrossRefGoogle Scholar
  21. 21.
    Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.Google Scholar
  22. 22.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  23. 23.
    Ding Y, Ezekoye OA, Zhang J, Wang C, Lu S. The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel. 2018;232:147–53.CrossRefGoogle Scholar
  24. 24.
    Ding Y, Wang C, Lu S. Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers Manag. 2015;98:500–6.CrossRefGoogle Scholar
  25. 25.
    Ding Y, Zhou R, Wang C, Lu K, Lu S. Modeling and analysis of bench-scale pyrolysis of lignocellulosic biomass based on merge thickness. Biores Technol. 2018;268:77–80.CrossRefGoogle Scholar
  26. 26.
    Chen W-C, Lin J-R, Liao M-S, Wang Y-W, Shu C-M. Green approach to evaluating the thermal hazard reaction of peracetic acid through various kinetic methods. J Therm Anal Calorim. 2017;127(1):1019–26.CrossRefGoogle Scholar
  27. 27.
    Herbrink M, Schellens J, Beijnen J, Nuijen B. Thermal study of pazopanib hydrochloride. J Therm Anal Calorim. 2017;130(3):1491–9.CrossRefGoogle Scholar
  28. 28.
    Šesták J, Fiala J, Gavrichev KS. Evaluation of the professional worth of scientific papers, their citation responding and the publication authority. J Therm Anal Calorim. 2018;131(1):463–71.CrossRefGoogle Scholar
  29. 29.
    Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117(40):10162–9.CrossRefGoogle Scholar
  30. 30.
    Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.CrossRefGoogle Scholar
  31. 31.
    Ding Y, Wang C, Chaos M, Chen R, Lu S. Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution. Bioresour Technol. 2016;200:658–65.CrossRefGoogle Scholar
  32. 32.
    Ding Y, Ezekoye OA, Lu S, Wang C. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers Manag. 2016;120:370–7.CrossRefGoogle Scholar
  33. 33.
    Jiang L, Xiao H-H, He J-J, Sun Q, Gong L, Sun J-H. Application of genetic algorithm to pyrolysis of typical polymers. Fuel Process Technol. 2015;138:48–55.CrossRefGoogle Scholar
  34. 34.
    An W, Jiang L, Sun J, Liew K. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Therm Anal Calorim. 2015;119(1):229–38.CrossRefGoogle Scholar
  35. 35.
    An W, Pan R, Meng Q, Zhu H. Experimental study on downward flame spread characteristics under the influence of parallel curtain wall. Appl Therm Eng. 2018;128:297–305.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Li Li
    • 1
  • Lingling Wei
    • 1
  • Yonggang Liu
    • 1
  • Changhai Li
    • 2
  • Yanming Ding
    • 3
  • Shouxiang Lu
    • 2
    Email author
  1. 1.CRRC Qingdao Sifang CO., LTDQingdaoChina
  2. 2.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Faculty of EngineeringChina University of Geosciences (Wuhan)WuhanChina

Personalised recommendations