Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1893–1901 | Cite as

Extraction of soursop oil (Annona muricata L.) by ultrasonic technique

Chromatographic evaluation and thermal characterization
  • Mariana Fonseca
  • Leonardo M. B. Ferreira
  • Rosana A. M. Soares
  • Marcelo Kobelnik
  • Gustavo G. Fontanari
  • Marisa S. CrespiEmail author
  • Clóvis A. Ribeiro
Article
  • 61 Downloads

Abstract

The soursop, Annona muricata L., Annonaceae family is a fruit mostly found in the northern and northeastern of Brazil, the Caribbean, and Central America. Extraction of the soursop seed oil was carried out in an ultrasound bath, yelling a 20% w/w yield, and fatty acids profile analyzed by gas chromatography indicated a predominance of stearic, oleic, and palmitic acid, in a relative percentage of 40.47%, 31.87%, and 19.82%, respectively. Thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) were used to characterize the thermal behavior of this oil. The phase transition of this oil was evaluated by DSC analysis, on heating and cooling modes. Additionally, the thermal behavior analysis evaluated by TG and DTG was carried out with two different sample masses and three heating rates (5, 10, and 20 °C min−1) under oxidant and inert purge gases. The cooling and heating DSC curves indicate the influence of saturated and unsaturated fatty acids in the thermal behavior. The activation energy (Ea) was obtained with the isoconversional methods proposed by Capela and Ribeiro, Ozawa and Friedman, and the resultant data lead to a dependence on the sample mass and purge gases, which show several kinetic patterns.

Keywords

Soursop oil Ultrasonic bath Chromatography Thermal behavior Kinetic evaluation 

References

  1. 1.
    Dembitsky VM, Poovarodom S, Leontowicz H, Leontowicz M, Vearasilp S, Trakhtenberg S, Gorinstein S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res Int. 2011;44:1671–701.CrossRefGoogle Scholar
  2. 2.
    Cavalcante LF, Carvalho SS, Lima EM, Feitosa Filho JC, Silva DA. Desenvolvimento inicial da gravioleira sob fontes e níveis de salinidade da água. Rev Bras Frutic. 2001;23:455–9.CrossRefGoogle Scholar
  3. 3.
    Souza CAS, Corrêa FLO, Mendonça W, Carvalho JG. Crescimento de mudas de gravioleira (Anonna muricata L.) em substrato com superfosfato simples e vermicomposto. Rev Bras Frutic. 2003;25:453–6.CrossRefGoogle Scholar
  4. 4.
    Almeida MMB, Souza PHM, Fonseca ML, Magalhães CEC, Lopes MFG, Lemos TLG. Evaluation of macro and micro-mineral content in tropical fruits cultivated in the northeast of Brazil. Ciênc Tecnol Aliment. 2009;29(3):581–6.CrossRefGoogle Scholar
  5. 5.
    Kuskoski EM, Asuero AG, Morales MT, Fett R. Wild fruits and pulps of frozen fruits: antioxidant activity, polyphenols and anthocyanins. Ciência Rural. 2006;36:1283–7.CrossRefGoogle Scholar
  6. 6.
    Umme A, Asbi BA, Sahnah Y, Junainah AH, Jamilah B. Characteristics of soursop natural puree and determination of optimum conditions for pasteurization. Food Chem. 1997;58:119–24.CrossRefGoogle Scholar
  7. 7.
    Sacramento CK, Faria JC, Cruz FL, Barreto WS, Gaspar JW, Leite JBV. Caracterização física e química de frutos de três tipos de gravioleira (Annona muricata L.). Rev Bras Frutic Jaboticabal SP. 2003;25(2):329–31.CrossRefGoogle Scholar
  8. 8.
    Lutchmedial M, Ramlal R, Badrie N, Chang-Yen I. Nutritional and sensory quality of stirred soursop (Annona muricata L.) yoghurt. Int J Food Sci Nutr. 2004;55(5):407–14.CrossRefGoogle Scholar
  9. 9.
    Silva LSF, Bibiano DS, Figueiredo MKK, Costa-Félix RPB. Desenvolvimento de uma técnica ultrassônica para avaliar teores de óleo e graxa em efluentes de biocombustíveis. Quim Nova. 2015;38(10):1339–44.Google Scholar
  10. 10.
    Cardoso WA, Almeida WB, Geremias R, Puckoski AG, Angioletto E. Comparação entre métodos de extração de óleo de microalgas. Rev Inic Cient. 2014;12(1):43–54.Google Scholar
  11. 11.
    Zhang Q-A, Zhang Z-Q, Yue X-F, Fan X-H, Li T, Chen S-F. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem. 2009;116:513–8.CrossRefGoogle Scholar
  12. 12.
    Chemat F, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultras Sonochem. 2011;18:813–35.CrossRefGoogle Scholar
  13. 13.
    Kumar D, Kumar G, Singh PCP. Fast, easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication. Ultras Sonochem. 2010;17:555–9.CrossRefGoogle Scholar
  14. 14.
    Blume T, Neis U. Improved wastewater disinfection by ultrasonic pre-treatment. Ultrason Sonochem. 2004;11:333–6.CrossRefGoogle Scholar
  15. 15.
    Collings AF, Farmer AD, Gwan PB, Sosa Pintos AP, Leo CJ. Processing contaminated soils and sediments by high power ultrasound. Min Eng. 2006;19:450–3.CrossRefGoogle Scholar
  16. 16.
    Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res. 2001;40:4681–715.CrossRefGoogle Scholar
  17. 17.
    Pham TD, Shrestha RA, Virkutyte J, Sillanp M. Recent studies in environmental applications of ultrasound. Can J Civ Eng. 2009;36(11):1849–58.CrossRefGoogle Scholar
  18. 18.
    Kobelnik M, Cassimiro DL, Dias DS, Ribeiro CA, Crespi MS. Thermal behavior of jerivá oil (Syagrus romanzoffiana). J Therm Anal Calorim. 2011.  https://doi.org/10.1007/s10973-011-1308-0.CrossRefGoogle Scholar
  19. 19.
    Kobelnik M, Cassimiro DL, Dias DS, Ribeiro CA, Crespi MS. Thermal behavior of araca oil (Psidium cattleianum Sabine). J Therm Anal Calorim. 2012.  https://doi.org/10.1007/s10973-011-1700-9.CrossRefGoogle Scholar
  20. 20.
    Tan CP, Che Man YB. Comparative differential scanning calorimetric analysis of vegetable oils: effects of heating rate variation. Phytochem Anal. 2002;13:129–41.CrossRefGoogle Scholar
  21. 21.
    Kotti F, Chiavaro E, Cerretani L, Barnaba C, Gargouri M, Bendini A. Chemical and thermal characterization of Tunisian extra virgin olive oil from Chetoui and Chemlali cultivars and different geographical origin. Eur Food Res Technol. 2009;228:735–42.CrossRefGoogle Scholar
  22. 22.
    Bantcheva GB, Biresawa G, Mohamed A, Moserc J. Temperature dependence of the oxidative stability of corn oil and polyalphaolefin in the presence of sulfides. Thermochim Acta. 2011;513:94–9.CrossRefGoogle Scholar
  23. 23.
    Sarpietro MG, Rocco F, Micieli D, Giuffrida MC, Ottimo S, Castelli F. Absorption of omega-3 fatty acids by biomembrane models studied by differential scanning calorimetry. Thermochim Acta. 2010;503–504:55–60.CrossRefGoogle Scholar
  24. 24.
    Kobelnik M, Fontanari GG, Marques MR, Ribeiro CA, Crespi MS. Thermal behavior and chromatographic characterization of oil extracted from the nut of the Butia (Butia capitata). J Therm Anal Calorim. 2016;123:2517–22.CrossRefGoogle Scholar
  25. 25.
    Marques MR, Fontanari GG, Kobelnik M, Freitas RAMS, Arêas JAG. Effect of cooking on the thermal behavior of the cowpea bean oil (Vigna unguiculata L. Walp). J Therm Anal Calorim. 2015;120:289–96.CrossRefGoogle Scholar
  26. 26.
    Kobelnik M, Fontanari GG, Soares R, et al. Study of the thermal behavior of bicuiba oil (Virola bicuyba). J Therm Anal Calorim. 2014;115:2107–13.CrossRefGoogle Scholar
  27. 27.
    Kobelnik M, Fontanari GG, Marques MR, Ribeiro CA, Crespi MS. Thermal behavior and chromatographic characterization of oil extracted from the nut of the Butia (Butia capitata). J Therm Anal Calorim. 2016;123:2517–22.CrossRefGoogle Scholar
  28. 28.
    Mohamed MA, Attia AK. Thermal behavior and decomposition kinetics of cinnarizine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2017;127:1751–6.CrossRefGoogle Scholar
  29. 29.
    Rajeshwari P. Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. J Therm Anal Calorim. 2016;123:1523–44.CrossRefGoogle Scholar
  30. 30.
    Erceg M, Kresic I, Jakic M, Andricic B. Kinetic analysis of poly(ethylene oxide)/lithium montmorillonite nanocomposites. J Therm Anal Calorim. 2017;127:789–97.CrossRefGoogle Scholar
  31. 31.
    Pouretedal HR, Damiri S, Ravanbod M, Haghdost M, Masoudi S. The kinetic of thermal decomposition of PETN, Pentastite and Pentolite by TG/DTA non-isothermal methods. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6164-0.CrossRefGoogle Scholar
  32. 32.
    Quraishi KS, Bustam MA, Krishnan S, Irfan Khan M, Wilfred DC, Lévêque JM. Thermokinetics of alkyl methylpyrrolidinium [NTf2] ionic liquids. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-016-5994-5.CrossRefGoogle Scholar
  33. 33.
    Shin S, Im SI, Nho NS, Lee KB. Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue. J Therm Anal Calorim. 2016;26:933–41.CrossRefGoogle Scholar
  34. 34.
    Ferreira LMB, Kobelnik M, Regasini LO, Dutra LA, Bolzani VS, Ribeiro CA. Synthesis and evaluation of the thermal behavior of flavonoids. J Therm Anal Calorim. 2017;127:1605–10.CrossRefGoogle Scholar
  35. 35.
    Kobelnik M, Fontanari GG, Marques MR, Ribeiro CA, Crespi MS. Thermal behavior and chromatographic characterization of oil extracted from the nut of the Butia (Butia capitata). J Therm Anal Calorim. 2016;123(3):2517–22.CrossRefGoogle Scholar
  36. 36.
    Capela JMV, Capela MV, Ribeiro CA. Nonisothermal kinetic parameters estimated using nonlinear regression. J Math Chem. 2009;45:769.CrossRefGoogle Scholar
  37. 37.
    Su MH, Shih MC, Lin K-H. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014;156:369–73.CrossRefGoogle Scholar
  38. 38.
    Lipp M, Simoneau C, Ulberth F, Anklam E, Crews C, Brereton P, de Greyt W, Schwack W, Wiedmaier C. Composition of genuine cocoa butter and cocoa butter equivalents. J Food Comp Anal. 2001;14:399–408.CrossRefGoogle Scholar
  39. 39.
    Markiewicz-kęszycka M, Czyżak-Runowska G, Lipińska P, Jacek Wójtowski J. Fatty acid profile of milk-a review. Bull Vet Inst Pulawy. 2013;57:135–9.CrossRefGoogle Scholar
  40. 40.
    Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, Savage GP. Vegetable oil blending: a review of physicochemical, nutritional and health effects. Trends Food Sci Technol. 2016;57:52–8.CrossRefGoogle Scholar
  41. 41.
    Tan CP, ManYB Che, Selamat J, Yusoff MSA. Application of arrhenius kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry. JAOCS. 2001;78:1133–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Mariana Fonseca
    • 1
  • Leonardo M. B. Ferreira
    • 1
  • Rosana A. M. Soares
    • 2
  • Marcelo Kobelnik
    • 3
  • Gustavo G. Fontanari
    • 2
  • Marisa S. Crespi
    • 1
    Email author
  • Clóvis A. Ribeiro
    • 1
  1. 1.Departamento de Química Analítica, Instituto de QuímicaUnesp – Univ. Estadual PaulistaAraraquaraBrazil
  2. 2.Departamento de Nutrição, Faculdade de Saúde PúblicaUniversidade de São PauloSão PauloBrazil
  3. 3.Centro Universitário do Norte Paulista, UNORPSão José do Rio PretoBrazil

Personalised recommendations