Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1053–1067 | Cite as

Crystallization kinetics study of melt-spun Zr66.7Ni33.3 amorphous alloy by electrical resistivity measurements

  • B. SmiliEmail author
  • L. Abadlia
  • W. Bouchelaghem
  • N. Fazel
  • I. Kaban
  • F. Gasser
  • J. G. Gasser
Article
  • 83 Downloads

Abstract

In this paper, the electronic transport properties of as-spun Zr66.7Ni33.3 alloys were studied in detail by a combination of electrical resistivity and absolute thermoelectric power measurements over a temperature range from 25 up to 400 °C. Moreover, the isochronal and isothermal crystallization kinetics of Zr66.7Ni33.3 glassy alloy has been investigated based on the electrical resistivity measurements. The comparative study of the crystallization kinetics of these binary amorphous alloys was carried out, for the first time to our knowledge, using an accurate method for electrical resistivity measurements. In the isochronal heating process, the apparent activation energy for crystallization was determined to be, respectively, 371.4 kJ mol−1 and 382.2 kJ mol−1, by means of Kissinger and Ozawa methods. The Johnson–Mehl–Avrami model was used to describe the isothermal transformation kinetics, and the local Avrami exponent has been determined in the range from 2.97 to 3.23 with an average value of 3.1, implying a mainly diffusion-controlled three-dimensional growth with an increasing nucleation rate. Based on an Arrhenius relationship, the local activation energy was analyzed, which yields an average value Ex = 376.2 kJ mol−1.

Keywords

Metallic glasses Electronic transport properties Thermal stability Crystallization kinetics Activation energy Local Avrami exponent 

References

  1. 1.
    Xu J, Zhao Z, Zuo M, Xing Q, Sun Z, Wang Y. Effects of Ca addition on the glass formation, microhardness and corrosion resistance in different solutions of Zr66.7−xNi33.3Cax (x = 0, 1, 3 and 5 at.%) metallic glasses. J Alloy Compd. 2018;595:178–84.  https://doi.org/10.1016/j.jallcom.2014.01.146.Google Scholar
  2. 2.
    An WK, Xiong X, Liu Y, Li JH, Cai AH, Luo Y, Li TL, Li XS. Investigation of glass forming ability and crystallization kinetics of Zr63.5Al10.7Cu10.7Ni15.1 bulk metallic glass. J Alloy Compd. 2009;486(1–2):288–92.Google Scholar
  3. 3.
    Gao Q, Jian Z, Xu J, Zhu M. Crystallization kinetics in Cu64.5Zr35.5 binary metallic glass. Key Eng Mater. 2017;2017:727.  https://doi.org/10.4028/www.scientific.net/KEM.727.233.Google Scholar
  4. 4.
    An S, Li Y, Li J, Zhao S, Liu B, Guan P. The linear relationship between diffusivity and crystallization kinetics in a deeply supercooled liquid Ni50Ti50 alloy. Acta Mater. 2018;152:1–6.  https://doi.org/10.1016/j.actamat.2018.04.008.Google Scholar
  5. 5.
    Andreoli AF, Ponsoni JB, Soares C, de Oliveira MF, Kiminami CS. Resistance upset welding of Zr-based bulk metallic glasses. J Mater Process Technol. 2018;255:760–4.  https://doi.org/10.1016/j.jmatprotec.2018.01.034.Google Scholar
  6. 6.
    Hua NB, Chen WZ, Liao ZL. Effects of Zr content on the bending property and crystallization behavior of ductile Zr-based bulk metallic glasses. Mater Sci Forum Trans Tech Publ. 2018;913:765–75.  https://doi.org/10.4028/www.scientific.net/MSF.913.765.Google Scholar
  7. 7.
    Liu BY, Ye F. Glass transition kinetics of La55Al25Ni10Cu10 bulk metallic glass by electrical resistivity measurement. Rare Met. 2013;32(4):359–62.  https://doi.org/10.1007/s12598-013-0089-y.Google Scholar
  8. 8.
    Kailath AJ, Dutta K, Alex TC, Mitra A. Crystallization study of Cu56Zr7Ti37 metallic glass by electrical resistivity measurement. J Mater Sci Technol. 2011;27(3):275–9.  https://doi.org/10.1016/S1005-0302(11)60062-5.Google Scholar
  9. 9.
    Nicoara M, Raduta A, Locovei C, Buzdugan D, Stoica M. About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys. J Therm Anal Calorim. 2017;127(1):107–13.  https://doi.org/10.1007/s10973-017-6808-0.Google Scholar
  10. 10.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.  https://doi.org/10.1021/ac60131a045.Google Scholar
  11. 11.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.  https://doi.org/10.1246/bcsj.38.1881.Google Scholar
  12. 12.
    Friedman HL. Kinetics of thermal degradation of char forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6(1):183–95.  https://doi.org/10.1002/polc.5070060121.Google Scholar
  13. 13.
    Avramin M. Kinetics of phase change I: general theory. J Chem Phys. 1939;7:1103–12.  https://doi.org/10.1063/1.1750380.Google Scholar
  14. 14.
    Avramin M. Kinetics of phase change II: transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.  https://doi.org/10.1063/1.1750631.Google Scholar
  15. 15.
    Avramin M. Kinetics of phase change III: granulation, phase change and microstructure. J Chem Phys. 1941;9(2):177–84.  https://doi.org/10.1063/1.1750872.Google Scholar
  16. 16.
    Zarzycki J. Les verres et l’état vitreux. Paris: Masson; 1982.Google Scholar
  17. 17.
    Aji DP, Johari GP. Decrease in electrical resistivity on depletion of islands of mobility during aging of a bulk metal glass. J Chem Phys. 2018;148(14):144506.  https://doi.org/10.1063/1.5024999.Google Scholar
  18. 18.
    de Boor J, Muller E. Data analysis for Seebeck coefficient measurements. Rev Sci Instrum. 2013;84:065102.  https://doi.org/10.1063/1.4807697.Google Scholar
  19. 19.
    Iwanaga S, Toberer ES, LaLonde A, Snyder GJ. A high temperature apparatus for measurement of the Seebeck coefficient. Rev Sci Instrum. 2011;82:063905.  https://doi.org/10.1063/1.3601358.Google Scholar
  20. 20.
    Zeid EA, Gaffar MA, Gaber A, Mostafa MS. Correlative study of the thermoelectric power, electrical resistivity and different precipitates of Al–1.12Mg2Si–0.35 Si (mass%) alloy. J Therm Anal Calorim. 2015;122(3):1269–77.  https://doi.org/10.1007/s10973-015-4861-0.Google Scholar
  21. 21.
    Sahin M, Çadırlı E, Bayram U, Ata P. Esener, Investigation of the thermoelectrical properties of the Sn91.22x–Zn8.8–Agx alloys. J Therm Anal Calorim. 2018;132:317–25.  https://doi.org/10.1007/s10973-017-6939-3.Google Scholar
  22. 22.
    Messaoud A, Fazel N, Garoux L, Gasser F, BenYounes R, Gasser JG. A new high temperature design to determine electrical and thermal conductivities and thermoelectric power. Applications to the sintered composite AgNi (90/10) “pseudo-alloy”. J Alloy Compd. 2018;739:407–17.  https://doi.org/10.1016/j.jallcom.2017.12.140.Google Scholar
  23. 23.
    Abadlia L, Gasser F, Khalouk K, Mayoufi M, Gasser JG. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures. Rev Sci Instrum. 2014;85:095121.  https://doi.org/10.1063/1.4896046.Google Scholar
  24. 24.
    Smili B, Messaoud A, Bouchelaghem W, Abadlia L, Fazel N, Benmoussa A, Kaban I, Gasser F, Gasser JG. Temperature dependence of the electrical resistivity and absolute thermoelectric power of amorphous metallic glass Ni33.3Zr66.7. J Non-Cryst Solids. 2018;481:352–60.  https://doi.org/10.1016/j.jnoncrysol.2017.11.012.Google Scholar
  25. 25.
    Altounian Z, Foiles CL, Muir B, Strom-Olsen JO. Thermoelectric power of Ni–Zr metal glasses. Phys Rev B. 1983;27(4):1955–8.  https://doi.org/10.1103/PhysRevB.27.1955.Google Scholar
  26. 26.
    Gupta R, Gupata A, Nigam AK, Chandra G. Effect of induced disorder on low temperature resistivity of some non-magnetic and magnetic metallic glasses. J. Alloys Compd. 2001;326:275–9.  https://doi.org/10.1016/S0925-8388(01)01283-X.Google Scholar
  27. 27.
    Sun F, Gloriant T. Primary crystallization process of amorphous Al88Ni6Sm6 alloy investigated by differential scanning calorimetry and by electrical resistivity. J Alloy Compd. 2009;477(1):133–8.  https://doi.org/10.1016/j.jallcom.2008.10.021.Google Scholar
  28. 28.
    Kokanovice I. Effect of disorder on the electrical resistivity in the partially crystalline Zr76Ni24 metallic glasses. J Alloy Comp. 2006;421:12–8.  https://doi.org/10.1016/j.jallcom.2005.11.004.Google Scholar
  29. 29.
    Faber TE, Ziman JM. A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys. Philos Mag. 1965;11:153–73.  https://doi.org/10.1080/14786436508211931.Google Scholar
  30. 30.
    Kaban I, Khalouk K, Gasser F, Gasser JG, Bednarčik J, Shuleshova O, Okulov I, Gemming T, Mattern N, Eckert J. In situ studies of temperature-dependent behaviour and crystallization of Ni36.5Pd36.5P27 metallic glass. J Alloys Compd. 2014;615:S208–12.  https://doi.org/10.1016/j.jallcom.2013.12.259.Google Scholar
  31. 31.
    Mooij JH. Electrical conduction in concentrated disordered transition metal alloys. Phys Stat Sol A. 1973;17:521–30.  https://doi.org/10.1002/pssa.2210170217.Google Scholar
  32. 32.
    Gasser JG. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys. J Phys Condens Matter. 2008;20:114103.  https://doi.org/10.1088/09538984/20/11/114103.Google Scholar
  33. 33.
    Sar F, Gasser JG. Electronic transport properties of liquid Ga–Zn alloys. Intermetallics. 2003;11(11):1369–76.  https://doi.org/10.1016/j.intermet.2003.09.007.Google Scholar
  34. 34.
    Zrouri H, Hugel J, Makradi A, Gasser JG. Spin-dependent electronic transport properties of liquid manganese. Phys Rev B. 2001;64:094202.  https://doi.org/10.1103/PhysRevB.64.094202.Google Scholar
  35. 35.
    Grosdidier B, Ben Abdellah A, Bouziane K, Mujibur Rahman SM, Gasser JG. Spin treatment-based approach for electronic transport in paramagnetic liquid transition metals. Philos Mag. 2013;93(26):3576–88.  https://doi.org/10.1080/14786435.2013.816448.Google Scholar
  36. 36.
    Pękała K, Antonowicz J, Jaśkiewicz P, Drobiazg T, Konupek J. Influence of quasicrystalline phase on transport processes in Zr70Pd30 amorphous alloy. J Alloys Compd. 2010;500:145–8.  https://doi.org/10.1016/j.jallcom.2010.03.243.Google Scholar
  37. 37.
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306.  https://doi.org/10.1016/S1359-6454(99)00300-6.Google Scholar
  38. 38.
    Kaban I, Jóvári P, Waske A, Stoica M, Bednarčik J, Beuneu B, Mattern N, Eckert J. Atomic structure and magnetic properties of Fe–Nb–B metallic glasses. J Alloy Compd. 2014;586:S189–93.  https://doi.org/10.1016/j.jallcom.2012.09.008.Google Scholar
  39. 39.
    Wu DY, Song KK, Gargarella P, Cao CD, Li R, Kaban L, Eckert J. Glass-forming ability, thermal stability of B2 CuZr phase, and crystallization kinetics for rapidly solidified Cu–Zr–Zn alloys. J Alloys Compd. 2016;664:99–108.  https://doi.org/10.1016/j.jallcom.2015.12.187.Google Scholar
  40. 40.
    Matsubara E, Ichitsubo T, Itoh K, Fukunaga T, Saida J, Nishiyama N, Kato H, Inoue A. Heating rate dependence of T g and T x in Zr-based BMGs with characteristic structures. J Alloys Compd. 2009;483:8–13.  https://doi.org/10.1016/j.jallcom.2008.07.225.Google Scholar
  41. 41.
    Wu J, Pan Y, Pi J. On non-isothermal kinetics of two Cu-based bulk metallic glasses. J Therm Anal Calorim. 2014;115:267–74.  https://doi.org/10.1007/s10973-013-3288-8.Google Scholar
  42. 42.
    Baulin O, Fabrègue D, Kato H, Liens A, Wada T, Pelletier JM. A new, toxic element-free Mg-based metallic glass for biomedical applications. J Non-Cryst Solids. 2018;481:397–402.  https://doi.org/10.1016/j.jnoncrysol.2017.11.024.Google Scholar
  43. 43.
    Song K, Bian X, Guo J, Li X, Xie M, Dong C. Study of non-isothermal primary crystallization kinetics of Al84Ni12Zr1Pr3 amorphous alloy. J Alloys Compd. 2008;465(1):L7–13.  https://doi.org/10.1016/j.jallcom.2007.10.121.Google Scholar
  44. 44.
    Lück R, Jiang Q, Predel B. Specific heat investigation of the glass transition and crystallization of amorphous NiZr2 using low heating rates. J Non-Cryst Solids. 1990;117:911–4.  https://doi.org/10.1016/0022-3093(90)90674-B.Google Scholar
  45. 45.
    Boutet S, Steele G, Dikeakos M, Altounian Z. Influence of oxygen impurities on the crystallization mechanism of NiZr2 metallic glasses. J Appl Phys. 2001;89(4):2441–6.  https://doi.org/10.1063/1.1334920.Google Scholar
  46. 46.
    Kim SM, Chandra D, Pal NK, Dolan MD, Chien WM, Talekar A, Lamb J, Paglieri SN, Flanagan TB. hydrogen permeability and crystallization kinetics in amorphous Ni–Nb–Zr alloys. Int J Hydrogen Energy. 2012;37(4):3904–13.  https://doi.org/10.1016/j.ijhydene.2011.04.220.Google Scholar
  47. 47.
    Wang HR, Gao YL, Min GH, Hui XD, Ye YF. Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region. Phys Lett A. 2003;314(1):81–7.  https://doi.org/10.1016/S0375-9601(03)00853-3.Google Scholar
  48. 48.
    Fetić AS, Gazdić I, Ostojić G, Sulejmanović S. Investigation of partially crystalline Zr77Ni23 metallic glass. TEM J. 2016;5(3):301–4.  https://doi.org/10.18421/TEM53-08.Google Scholar
  49. 49.
    Kokanovic I, Tonejc A. Influence of hydrogen dopant on the structure and crystallization of the partially crystalline Zr76Ni24 metallic glass. J Alloys Compd. 2004;377(1):141–9.  https://doi.org/10.1016/j.jallcom.2004.01.049.Google Scholar
  50. 50.
    Wang LF, Cui X, Zhang QD, Zu FQ. Thermal stability and crystallization kinetics of Cu–Zr–Al–Ag BMGs investigated with isothermal electrical resistance measurement. Met Mater Int. 2014;20(4):669–76.  https://doi.org/10.1007/s12540-014-4012-3.Google Scholar
  51. 51.
    Xu T, Jian Z, Chang F, Zhuo L, Zhang T. Isothermal crystallization kinetics of Fe75Cr5P9B4C7 metallic glass with cost-effectiveness and desirable merits. J Therm Anal Calorim. 2015;2015:1–7.  https://doi.org/10.1007/s10973-018-7208-9.Google Scholar
  52. 52.
    Sahoo KL, Panda AK, Das S, Rao V. Crystallization study of amorphous Al87.5Ni7Mm5Fe0.5 alloy by electrical resistivity measurement. Mater Lett. 2004;58(3):316–20.  https://doi.org/10.1016/S0167-577X(03)00477-4.Google Scholar
  53. 53.
    Pratap A, Lad KN, Rao TLS, Majmudar P, Saxena NS. Kinetics of crystallization of amorphous Cu50Ti50 alloy. J Non-Cryst Solids. 2004;345:178–81.  https://doi.org/10.1016/j.jnoncrysol.2004.08.018.Google Scholar
  54. 54.
    Yan ZJ, He SR, Li JR, Zhou YH. On the crystallization kinetics of Zr60Al15Ni25 amorphous alloy. J Alloys Compd. 2004;368:175–9.  https://doi.org/10.1016/j.jallcom.2003.08.074.Google Scholar
  55. 55.
    Ramasamy P, Stoica M, Taghvaei AH, Prashanth KG, Kumar R, Eckert J. Kinetic analysis of the non-isothermal crystallization process, magnetic and mechanical properties of FeCoBSiNb and FeCoBSiNbCu bulk metallic glasses. J Appl Phys. 2016;119:73908.  https://doi.org/10.1063/1.4942179.Google Scholar
  56. 56.
    Stoica M, Kumar S, Roth S, Ram S, Eckert J, Vaughan G, Yavari AR. Crystallization kinetics and magnetic properties of Fe66Nb4B30 bulk metallic glass. J Alloys Compd. 2009;483(1):632–7.  https://doi.org/10.1016/j.jallcom.2007.11.150.Google Scholar
  57. 57.
    Venkataraman S, Rozhkova E, Eckert J, Schulta L, Sordelet DJ. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: the effect of particulate reinforcement. Intermetallics. 2005;13(8):833–40.  https://doi.org/10.1016/j.intermet.2005.01.010.Google Scholar
  58. 58.
    Taghvaei AH, Eckert J. A comparative study on the isochronal and isothermal crystallization kinetics of Co46.45Fe25.55Ta8B20 soft magnetic metallic glass with high thermal stability. J Alloys Compd. 2016;675(1):223–30.  https://doi.org/10.1016/j.jallcom.2016.03.053.Google Scholar
  59. 59.
    Ranganathan S, Heimendahl MV. The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci. 1981;16:2401–4.  https://doi.org/10.1007/BF01113575.Google Scholar
  60. 60.
    Zhu M, Fa Y, Jian Z, Yao L, Jin C, Nan R, Chang FE. Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses. J Therm Anal Calorim. 2018;132(1):173–80.  https://doi.org/10.1007/s10973-017-6867-2.Google Scholar
  61. 61.
    Wang X, Wang D, Zhu B, Li Y, Han F. Crystallization kinetics and thermal stability of mechanically alloyed Al76Ni8Ti8Zr4Y4 glassy powder. J Non-Cryst Solids. 2014;385:111–6.  https://doi.org/10.1016/j.jnoncrysol.2013.11.015.Google Scholar
  62. 62.
    Lozada-Flores O, Figueroa IA, Gonzalez G, Salas-Reyes AE. Influence of minor additions of Si on the crystallization kinetics of Cu55Hf45 metallic glasses. Thermochim Acta. 2018;662:116–25.  https://doi.org/10.1016/j.tca.2018.02.006.Google Scholar
  63. 63.
    Musiał A, Śniadecki Z, Idzikowski B. Thermal stability and glass forming ability of amorphous Hf2Co11B alloy. Mater Des. 2017;114:404–9.  https://doi.org/10.1016/j.matdes.2016.11.004.Google Scholar
  64. 64.
    Majhi K, Varma KBR. Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J Mater Sci. 2009;44(2):385–91.  https://doi.org/10.1007/s10853-008-3149-1.Google Scholar
  65. 65.
    Fang Y, Peng G, Ghafari M, Feng T. Thermodynamic properties and crystallization kinetics of the Co90 Sc10 amorphous alloy. Intermetallics. 2018;96:58–62.  https://doi.org/10.1016/j.intermet.2018.02.013.Google Scholar
  66. 66.
    Sun YD, Shen P, Li ZQ, Liu JS, Cong MQ, Jiang M. Kinetics of crystallization process of Mg–Cu–Gd based bulk metallic glasses. J Non-Cryst Solids. 2012;358:1120–7.  https://doi.org/10.1016/j.jnoncrysol.2012.02.002.Google Scholar
  67. 67.
    Lozada-Flores O, Figueroa IA, Lara GA, Gonzalez G, Borja-Soto C, Verduzco JA. Crystallization kinetics of Cu55Hf45 glassy alloy. J Non-Cryst Solids. 2017;460:1–5.  https://doi.org/10.1016/j.jnoncrysol.2017.01.021.Google Scholar
  68. 68.
    Jiang XD, Zhang HW, Wen QY, Zhong ZY, Tang XL. Crystallization kinetics of magnetron-sputtered amorphous CoNbZr thin films. Vacuum. 2005;77(2):209–15.  https://doi.org/10.1016/j.vacuum.2004.09.012.Google Scholar
  69. 69.
    Khoo CY, Liu H, Sasangka WA, Made RI, Tamura N, Kunz M, Budiman AS, Gan CL, Thompson CV. Impact of deposition conditions on the crystallization kinetics of amorphous GeTe films. J Mater Sci. 2016;51:1864–72.  https://doi.org/10.1007/s10853-015-9493-z.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Laboratory of Inorganic Materials ChemistryUniversity Badji Mokhtar of AnnabaAnnabaAlgeria
  2. 2.Laboratoire de Physique de la Matière et du Rayonnement (LPMR)Université Mohamed Chérif MessaadiaSouk-AhrasAlgeria
  3. 3.Laboratoire de Chimie et Physique - Approche Multiéchelles des Milieux Complexes (LCP-A2MC), Institut de Chimie, Physique et MatériauxUniversité de LorraineMetz cedex 3France
  4. 4.IFW Dresden, Institute for Complex MaterialsDresdenGermany

Personalised recommendations