Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1965–1973 | Cite as

Thermal, spectroscopic and in vitro antimicrobial analysis of 2, 2′-(2-((carboxymethyl)(2-(2-hydroxyethoxy)-2-oxoethyl)amino)ethylazanediyl)diacetatocobalt(II)/manganese(II) hydrate

  • A. Jeya RajendranEmail author
  • Soven Dhawa
  • G. Jeya Jothi
  • A. Hannah Hepsibah


Co(II), and Mn(II) complexes using 2,2′-(2-((carboxymethyl)(2-(2-hydroxyethoxy)-2-oxoethyl)amino)ethylazanediyl)diacetato (SCHOEA), derivative of disodium salt of EDTA were synthesized by three stages and characterized by spectroscopic (UV–Visible, FTIR, EPR, 1H NMR) techniques, magnetic susceptibility measurements and thermal studies (TA). Electronic and magnetic susceptibility measurements indicated low-spin octahedral complexes. The FTIR spectra supported the coordination mode of the ligand as hexadentate with the metal ions. Molar conductivity supported the non-electrolytic nature of the complexes. The EPR spectra confirmed the distorted octahedral geometry of the complexes based on the computation of Hamiltonian parameters and the degree of covalency. In vitro antimicrobial activities of the ligand and metal complexes against three bacterial (Enterobacteraerogenes, Micrococcus luteus, Shigellaflexineria) and two fungal species (Candida albicans, Aspergillusflavus) were performed by disc diffusion method which revealed that the complexes are more potent bactericides and fungicides than the ligand.


Hexadentate ligand Derivative of EDTA Cobalt(II)/manganese(II) complex Thermal studies Hamiltonian parameters In vitro antimicrobial activity 



The funding was provided by LCTOI Project (Grant No. 2LCTOI14CHM002).

Supplementary material

10973_2018_7729_MOESM1_ESM.docx (857 kb)
Supplementary material 1 (DOCX 857 kb)


  1. 1.
    Chandra S, Kumar U. Spectral and magnetic studies on manganese(II), cobalt(II) and nickel(II) complexes with Schiff bases. Spectrochim Acta. 2005;61:219–27.CrossRefGoogle Scholar
  2. 2.
    Pravin N, Devaraji V, Raman N. Targeting protein kinase and DNA molecules by diimine-phthalate complexes in antiproliferative activity. Int J Biol Macromol. 2015;79:837–55.CrossRefGoogle Scholar
  3. 3.
    Scanlon KJ, Kashani MS, Miyachi H, Sowers LC, Rossi J. Molecular basis of cisplatin resistance in human carcinomas: model system and patients. Anticancer Res. 1989;9:1310–2.Google Scholar
  4. 4.
    Perez RP, Hamilton TC, Ozols RF, Young RC. Mechanisms and modulation of resistance to chemotherapy in ovarian cancer. Cancer. 1993;71:1571–80.CrossRefGoogle Scholar
  5. 5.
    Wang D, Lippard S. Cellular processing of platinum anticancer drug. J Nat Rev Drug Discov. 2005;4:307–20.CrossRefGoogle Scholar
  6. 6.
    Anitha C, Sheela CD, Tharmaraj P, Sumathi S. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde. Spectrochim Acta A. 2012;96:493–500.CrossRefGoogle Scholar
  7. 7.
    Gaber M, El-Hefnawy GB, El-Borai MA, Mohamed NF. Synthesis, spectral and thermal studies of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complex dyes based on hydroxyquinoline moiety. J Therm Anal Calorim. 2012;109:1397–405.CrossRefGoogle Scholar
  8. 8.
    Patil SA, Unki SN, Badami PS. Synthesis, characterization, biological and thermal behavior of Co(II), Ni(II) and Cu(II) complexes with Schiff bases having coumarin moieties. J Therm Anal Calorim. 2013;111:1281–9.CrossRefGoogle Scholar
  9. 9.
    Avsar G, Altinel H, Yilmaz MK, Guzel B. Synthesis, characterization and thermal decomposition of fluorinated salicylaldehyde Schiff base derivatives (salen) and their complexes with copper(II). J Therm Anal Calorim. 2010;101:199–203.CrossRefGoogle Scholar
  10. 10.
    Samsonowicz M, Regulska E. Spectroscopic study of molecular structure, antioxidant and biological effects of metal hydroxyflavonol complexes. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2017;173:757–71.CrossRefGoogle Scholar
  11. 11.
    Badea M, CaluI ChifiriucMC, Bleotu C, Marin A, et al. Thermal behaviour of some novel antimicrobials based on complexes with a Schiff base bearing 1,2,4-triazole pharmacophore. J Therm Anal Calorim. 2014;118:1145–57.CrossRefGoogle Scholar
  12. 12.
    Zayed EM, Zayed MA, Hindy AMM. Thermal and spectroscopic investigation of novel Schiff base, its metal complexes, and their biological activities. J Therm Anal Calorim. 2014;116:391–400.CrossRefGoogle Scholar
  13. 13.
    Sekerci M, Yakuphanogulu F. Thermal analysis study of some transition metal complexes by TG and DSC methods. J Therm Anal Calorim. 2004;75:189–95.CrossRefGoogle Scholar
  14. 14.
    Magri AL, Magri AD, Balestrieri F, Cardarelli E, Ascenzo GD, Chiacchierini E. Thermal properties and spectroscopic characteristics of the complexes of pyrazine-2-carboxylic acid with divalent metal ions. Thermochim Acta. 1980;38(2):225–33.CrossRefGoogle Scholar
  15. 15.
    Raman N, Sobha S, Thamaraichelvan A. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents. Spectrochim Acta A. 2011;78:888–98.CrossRefGoogle Scholar
  16. 16.
    Poddel’sky AI, Cherkasov VK, Abakumov GA. Transition metal complexes with bulky 4,6-di-tert-butyl-N-aryl(alkyl)-o-iminobenzoquinonato ligands: structure, EPR and magnetism. Coord Chem Rev. 2009;253:291–324.CrossRefGoogle Scholar
  17. 17.
    Gurumoorthy P, Dharmasivam M, Durai P, Chinnasamy A, Rahiman AK. Magneto-structural correlation, antioxidant, DNA interaction and growth activities of new chloro-bridged phenolate complexes. RSC Adv. 2014;4:42855–72.CrossRefGoogle Scholar
  18. 18.
    Karthikeyan MS, Parsad DJ, Poojary B, Bhat KS, Holla BS, Kumari NS. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorg Med Chem. 2006;14:7482–9.CrossRefGoogle Scholar
  19. 19.
    Panneerselvam P, Nair RR, Vijayalakshmi G, Subramanian EH, Sridhar SK. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur J Med Chem. 2005;40:225–9.CrossRefGoogle Scholar
  20. 20.
    Singh K, Barwa MS, Tyagi P. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur J Med Chem. 2006;41:147–53.CrossRefGoogle Scholar
  21. 21.
    West DX, Liberta AE, Padhye SB, Chikate RC, Sonawane PB, Kumbhar AS, Yerande RG. Thiosemicarbazone complexes of copper(II): structural and biological studies. Coord Chem Rev. 1993;123:49–71.CrossRefGoogle Scholar
  22. 22.
    Zhang T, Wei H, Yang XH, Xia B, et al. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil. Chemosphere. 2014;109:1–6.CrossRefGoogle Scholar
  23. 23.
    Santos MA, Gama S, Gano L, Farkas E. Bis (3-hydroxy-4-pyridinone)-EDTA derivative as a potential therapeutic Al-chelating agent. Synthesis, solution studies and biological assays. J Inorg Biochem. 2005;99:1845–52.CrossRefGoogle Scholar
  24. 24.
    Singh P, Aggarwal S, Tiwari AK, Kumar V, Pratap R, et al. Bis (Methylpyridine)-EDTA derivative as a potential ligand for PET imaging: synthesis, complexation, and biological evaluation. Chem Bio Drug Des. 2014;84:704–11.CrossRefGoogle Scholar
  25. 25.
    Huang H, Liu L, Zhang L, Zhao Q, Zhou Y, Yuan S, Tang Z, Liu X. Peroxidase-like activity of ethylene diaminetetraacetic acid and its application for ultrasensitive detection of tumor biomarkers and circular tumor cells. Anal Chem. 2016;89:666–72.CrossRefPubMedGoogle Scholar
  26. 26.
    Chatterjee D, Mitra A (2006) Ruthenium polyaminocarboxylate complexes, Scholar
  27. 27.
    Gopalan R, Ramalingam V. Concise coordination chemistry. Copyright, 2001.Google Scholar
  28. 28.
    Lever ABP. Inorganic electronic spectroscopy. Amesterdam: Elsevier; 1984.Google Scholar
  29. 29.
    Ramesh R, Maheswaran S. Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes. J Inorg Biochem. 2003;96(4):457–62.CrossRefGoogle Scholar
  30. 30.
    Mahendiran D, Gurumoorthy P, Gunasekaran K, Kumar RS, Rahiman AK. Structural modeling, in vitro antiproliferative activity, and the effect of substituents on the DNA fastening and scission actions of heteroleptic copper(II) complexes with terpyridines and naproxen. New J Chem. 2015;39:7895–911. Scholar
  31. 31.
    Sandhu GK, Verma SP. Triorganotin(IV) derivatives of five membered heterocyclic 2-carboxylic acids. Polyhedron. 1987;3:587–92.CrossRefGoogle Scholar
  32. 32.
    Singh HL, Singh J. Synthesis, spectral, 3D molecular modeling and antibacterial studies of dibutyltin(IV) Schiff base complexes derived from substituted isatin and amino acids. Nat Sci. 2012;4:170.Google Scholar
  33. 33.
    Pavia DL, Lampman GM, Kriz GS. Introduction to spectroscopy. 3rd ed. Washington: W. B. Saunders Co.; 2001.Google Scholar
  34. 34.
    Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds. 4th ed. New York: Wiley; 1986.Google Scholar
  35. 35.
    Raman N, Pravin N. DNA fastening and ripping actions of novel Knoevenagel condensed dicarboxylic acid complexes in antitumor journey. Eur J Med Chem. 2014;80:57–70.CrossRefGoogle Scholar
  36. 36.
    Ray RK, Kauffman GB. EPR spectra and covalency of bis (amidinourea/O-alkyl-1-amidinourea) copper(II) complexes part II. Properties of the CuN4 2−chromophore. Inorg Chim Acta. 1990;173(2):207–14.CrossRefGoogle Scholar
  37. 37.
    Anjaneyulu Y, Rao RP. Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu (II) with acetylacetone and various salicylic acids. Synth React Inorg Met-Org Chem. 1986;16:257–272.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • A. Jeya Rajendran
    • 1
    Email author
  • Soven Dhawa
    • 1
  • G. Jeya Jothi
    • 2
  • A. Hannah Hepsibah
    • 2
  1. 1.Advanced Materials Research Laboratory, Department of ChemistryLoyola CollegeChennai, 600034India
  2. 2.Department of Plant Biology and BiotechnologyLoyola CollegeChennaiIndia

Personalised recommendations