Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1425–1432 | Cite as

Anti-Staphylococcus aureus evaluation of gallic acid by isothermal microcalorimetry and principle component analysis

  • Shi-biao Pu
  • Zhi-jie MaEmail author
  • Qi WangEmail author


The emergence of antibiotic-resistant Staphylococcus aureus requires new antibacterial drugs. In this study, using a thermal activity monitor air isothermal microcalorimeter, the heat flow power–time curves of S. aureus growth at 37 °C in the presence of different concentrations of gallic acid were determined. By analyzing the metabolic curves and some quantitative thermo-kinetic parameters obtained from these curves with the help of principle component analysis (PCA), the antibacterial effects of gallic acid on S. aureus were rapidly and accurately evaluated. Growth rate constant k2 of the second exponential phase and the maximum heat flow output power P2 for S. aureus growth were selected as the two main parameters for the antibacterial evaluation. Results showed that 10 μg mL−1 of gallic acid began to inhibit the growth of S. aureus, and high concentrations (more than 20 μg mL−1) of this compound exhibited strong anti-S. aureus effects. 63.51 μg mL−1 of gallic acid resulted in a 50% inhibitory ratio on S. aureus. All these illustrated that the anti-S. aureus effects were enhanced with increasing the concentration of this compound. Gallic acid can be used as a new natural and safe antibacterial drug for treating multidrug-resistant S. aureus. This work provided a useful idea of the combination of microcalorimetry and PCA for highly sensitive evaluation of the antibacterial effects of various compounds, providing reliable references for screening out new antibacterial drugs.


Isothermal microcalorimetry S. aureus Gallic acid Principle component analysis Growth inhibitory ratio 



The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (81760812) and the Yunnan Provincial Science and Technology Department-Applied Basic Research joint Special Funds of Yunnan University of Traditional Chinese Medicine (2017FF117(-035)).


  1. 1.
    Hamdan-Partida A, González-García S, de la Rosa García E, Bustos-Martínez J. Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat. Int J Med Microbiol. 2018;308:469–75.CrossRefGoogle Scholar
  2. 2.
    Longhurst WD, Sheele JM. Spontaneous methicillin-resistant Staphylococcus aureus (MRSA) meningitis. Am J Emerg Med. 2018;36:909.e1–3.CrossRefGoogle Scholar
  3. 3.
    Ohkoshi Y, Sato T, Wada T, Fukushima Y, Murabayashi H, Takakuwa Y, Nishiyama K, Honda H, Shiraishi T, Kuronuma K, Takahashi H, Nakajima C, Suzuki Y, Yokota S. Whole genome analysis of a multidrug-resistant Streptococcus pneumoniae isolate from a patient with invasive pneumococcal infection developing disseminated intravascular coagulation. J Infect Chemother. 2018;24:674–81.CrossRefGoogle Scholar
  4. 4.
    Shi X, Zhu X. Biofilm formation and food safety in food industries. Trends Food Sci Technol. 2009;20:407–13.CrossRefGoogle Scholar
  5. 5.
    Fard-Mousavi N, Mosayebi G, Amouzandeh-Nobaveh A, Japouni-Nejad A, Ghaznavi-Rad E. The dynamic of Staphylococcus aureus nasal carriage in Central Iran. Jundishapur J Microbiol. 2015;8:e20760.CrossRefGoogle Scholar
  6. 6.
    Malheiros PS, Passos CT, Casarin LS, Serraglio L, Tondo EC. Evaluation of growth and transfer of Staphylococcus aureus from poultry meat to surfaces of stainless steel and polyethylene and their disinfection. Food Control. 2010;21:298–301.CrossRefGoogle Scholar
  7. 7.
    Bustos-Martínez J, Hamdan-Partida A, Gutiérrez-Cárdenas M. Staphylococcus aureus: the reemergence of a pathogen in the community. Rev Bioméd. 2006;17:287–305.Google Scholar
  8. 8.
    Arias M, García-Falcón MS, García-Río L, Mejuto JC, Rial-Otero R, Simal-Gándara J. Binding constants of oxytetracycline to animal feed divalent cations. J Food Eng. 2007;78:69–73.CrossRefGoogle Scholar
  9. 9.
    Sendzik J, Lode H, Stahlmann R. Quinolone-induced arthropathy: an update focusing on new mechanistic and clinical data. Int J Antimicrob Agents. 2009;33:194–200.CrossRefGoogle Scholar
  10. 10.
    Kong WJ, Jin C, Xiao XH, Zhao YL, Li ZL, Zhang P, Liu W, Li XF. Comparative study of effects of two bile acid derivatives on Staphylococcus aureus by multiple analytical methods. J Hazard Mater. 2010;179:742–7.CrossRefGoogle Scholar
  11. 11.
    Silvan JM, Mingo E, Hidalgo M, de Pascual-Teresa S, Carrascosa AV, Martinez-Rodriguez AJ. Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control. 2013;29:25–31.CrossRefGoogle Scholar
  12. 12.
    Khatkar A, Nanda A, Kumar P, Narasimhan B. Synthesis, antimicrobial evaluation and QSAR studies of gallic acid derivatives. Arab J Chem. 2017;10:S2870–80.CrossRefGoogle Scholar
  13. 13.
    Obreque-Slier E, Peña-Neira A, López-Solís R, Zamora-Marín F, Ricardo da Silva J, Laureano O. Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. J Agric Food Chem. 2010;58:3591–9.CrossRefGoogle Scholar
  14. 14.
    Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS, Nabavi SM. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol. 2014;15:362–72.CrossRefGoogle Scholar
  15. 15.
    Díaz-Gómez R, Toledo-Araya H, López-Solís R, Obreque-Slier E. Combined effect of gallic acid and catechin against Escherichia coli. LWT Food Sci Technol. 2014;59:896–900.CrossRefGoogle Scholar
  16. 16.
    Sarjit A, Wang Y, Dykes GA. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol. 2015;46:227–33.CrossRefGoogle Scholar
  17. 17.
    Liu MH, Wu XX, Li JK, Liu L, Zhang RG, Shao DY, Du XD. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control. 2017;73:613–8.CrossRefGoogle Scholar
  18. 18.
    Sorrentino E, Succi M, Tipaldi L, Pannella G, Maiuro L, Sturchio M, Coppola R, Tremonte P. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int J Food Microbiol. 2018;266:183–9.CrossRefGoogle Scholar
  19. 19.
    Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Weiger R, Waltimo T. Isothermal microcalorimetry provides new insights into biofilm variability and dynamics. FEMS Microbiol Lett. 2012;337:31–7.CrossRefGoogle Scholar
  20. 20.
    Clauss M, Trampuz A, Borens O, Bohner M, Ilchmann T. Biofilm formation on bone grafts and bone graft substitutes: comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomater. 2010;6:3791–7.CrossRefGoogle Scholar
  21. 21.
    Xu JB, Feng YZ, Barros N, Zhong LH, Chen RR, Lin XG. Exploring the potential of microcalorimetry to study soil microbial metabolic diversity. J Therm Anal Calorim. 2017;127:1457–65.CrossRefGoogle Scholar
  22. 22.
    Braissant O, Wirz D, Gopfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8.CrossRefGoogle Scholar
  23. 23.
    Fredua-Agyeman M, Gaisford S, Beezer AE. Observation with microcalorimetry: behaviour of P. aeruginosa in mixed cultures with S. aureus and E. coli. Thermochim Acta. 2018;663:93–8.CrossRefGoogle Scholar
  24. 24.
    Wu XY, Yao J, Wang F, Ma JC, Sun JJ, Liu RP. Toxicity evaluation of five polyaromatic hydrocarbons to Escherichia coli using microcalorimetry and QASRs. Int Biodeterior Biodegrad. 2018;128:129–33.CrossRefGoogle Scholar
  25. 25.
    Ferreira IS, Bettencourt A, Bétrisey B, Gonçalves LMD, Trampuz A, Almeida AJ. Improvement of the antibacterial activity of daptomycin-loaded polymeric microparticles by Eudragit RL 100: an assessment by isothermal microcalorimetry. Int J Pharmaceut. 2015;485:171–82.CrossRefGoogle Scholar
  26. 26.
    Aveledo R, Aveledo A, Vázquez C, Lago N, Mato MM, Legido JL. Study of bacterial sensitivity in zinc sulfate solutions by microcalorimetry. J Therm Anal Calorim. 2018;133:773–7.CrossRefGoogle Scholar
  27. 27.
    Wang T, Zhou XL, Zou WJ, Zhang P, Wang JP, Li HT, Wei SZ, Li K, Gao JY, Li YZ, Zhao YL. Synergistic effects of Ginseng C. A. Mey and Astragalus membranaceus (Fisch.) Bunge on activating mice splenic lymphocytes detected by microcalorimetry and the underlying mechanisms predicted by in silico network analysis. J Therm Anal Calorim. 2018;132:1933–42.CrossRefGoogle Scholar
  28. 28.
    Gysin M, Braissant O, Gillingwater K, Brun R, Mäser P, Wenzler T. Isothermal microcalorimetry-A quantitative method to monitor Trypanosoma congolense growth and growth inhibition by trypanocidal drugs in real time. IJP Drug. 2018;8:159–64.Google Scholar
  29. 29.
    Tu B, Li RR, Liu ZJ, Chen ZF, Ouyang Y, Hu YJ. Structure-activity relationship study between baicalein and wogonin by spectrometry, molecular docking and microcalorimetry. Food Chem. 2018;208:192–8.CrossRefGoogle Scholar
  30. 30.
    Kong WJ, Wang JB, Xing XY, Xiao XH, Zhao YL, Zang QC, Zhang P, Jin C, Li ZL, Liu W. Antifungal evaluation of cholic acid and its derivatives on Candida albicans by microcalorimetry and chemometrics. Anal Chim Acta. 2011;689:250–6.CrossRefGoogle Scholar
  31. 31.
    Xu WG, Liu Y, Liu DJ, Niu FL. Antimicrobial activity of galic acid. Chin J Public Health. 2012;28:1329–31.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Beijing University of Traditional Chinese MedicineBeijingPeople’s Republic of China
  2. 2.Yunnan University of Traditional Chinese MedicineKunmingPeople’s Republic of China
  3. 3.Pharmacy Department, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations