Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2329–2338 | Cite as

Critical analysis of non-isothermal kinetics of poultry litter pyrolysis

  • Janaína Junges
  • Gabriela Carvalho Collazzo
  • Daniele Perondi
  • Adalberto Ayjara Dornelles Filho
  • Suelem Daiane Ferreira
  • Aline Dettmer
  • Eduardo Osório
  • Marcelo GodinhoEmail author
Article
  • 69 Downloads

Abstract

Poultry litter is a waste from poultry industry that has been used for bioenergy generation and has high potential as feedstock for thermochemical processes, as pyrolysis. Kinetic parameters of poultry litter pyrolysis are paramount for techno-economic analysis of commercial scale processes. Scientific community has shown concern about the suitable application of different methods (model-free/model-fitting) for the determination of kinetic parameters. The application of an unsuitable method may lead to unreliable kinetic parameters. In this study, the performance of model-free methods for the determination of the kinetic parameters of poultry litter pyrolysis was evaluated. The characterization was performed through thermogravimetric analysis. Were applied the methods of Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa and Vyazovkin. The model-free methods were not adequate to describe the kinetics of poultry litter pyrolysis throughout the whole reaction. Therefore, a model-based (five pseudo-components model) method was applied to obtain the kinetic parameters of poultry litter pyrolysis. Such model provided an adequate fit to the experimental data.

Keywords

Poultry litter wastes Kinetics Pseudo-component Protein 

Notes

Acknowledgements

The authors would like to acknowledge the National Council for Scientific and Technological Development (CNPq No 161524/2015-0) and Higher Education Personnel Improvement Coordination (CAPES), for providing the scholarships, and the owner of the laying farm, for enabling the sampling procedure.

Supplementary material

10973_2018_7710_MOESM1_ESM.docx (560 kb)
Supplementary material 1 (DOCX 559 kb)

References

  1. 1.
    Font-Palma C. Characterisation, kinetics and modelling of gasification of poultry manure and litter: an overview. Energy Convers Manag (Internet). 2012;53:92–8.  https://doi.org/10.1016/j.enconman.2011.08.017.CrossRefGoogle Scholar
  2. 2.
    Bolan NS, Szogi AA, Chuasavathi T, Seshadri B, Rothrock MJ, Panneerselvam P. Uses and management of poultry litter. Worlds Poult Sci J (Internet). 2010;66:673–98. http://www.journals.cambridge.org/abstract_S0043933910000656.CrossRefGoogle Scholar
  3. 3.
    Collazzo GC, Broetto CC, Perondi D, Junges J, Dettmer A, Dornelles Filho AA, et al. A detailed non-isothermal kinetic study of elephant grass pyrolysis from different models. Appl Therm Eng (Internet). 2017;110:1200–11.  https://doi.org/10.1016/j.applthermaleng.2016.09.012.CrossRefGoogle Scholar
  4. 4.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta (Internet). 2011 [cited 2014 Jul 11];520:1–19. http://linkinghub.elsevier.com/retrieve/pii/S0040603111002152.
  5. 5.
    Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci (Internet). 2017;62:33–86.  https://doi.org/10.1016/j.pecs.2017.05.004.CrossRefGoogle Scholar
  6. 6.
    Papari S, Hawboldt K. A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sustain Energy Rev (Internet). 2015;52:1580–95.  https://doi.org/10.1016/j.rser.2015.07.191.CrossRefGoogle Scholar
  7. 7.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  8. 8.
    Rueda-Ordónez YJ, Tannous K, Olivares-Gómez E. An empirical model to obtain the kinetic parameters of lignocellulosic biomass pyrolysis in an independent parallel reactions scheme. Fuel Process Technol (Internet). 2015;140:222–30.  https://doi.org/10.1016/j.fuproc.2015.09.001.CrossRefGoogle Scholar
  9. 9.
    Chen C, Miao W, Zhou C, Wu H. Thermogravimetric pyrolysis kinetics of bamboo waste via asymmetric double sigmoidal (Asym2sig) function deconvolution. Bioresour Technol (Internet). 2017;225:48–57.  https://doi.org/10.1016/j.biortech.2016.11.013.CrossRefGoogle Scholar
  10. 10.
    Kameno N, Yamada S, Amimoto T, Amimoto K, Ikeda H, Koga N. Thermal degradation of poly(lactic acid) oligomer: reaction mechanism and multistep kinetic behavior. Polym Degrad Stab (Internet). 2016;134:284–95.  https://doi.org/10.1016/j.polymdegradstab.2016.10.018.CrossRefGoogle Scholar
  11. 11.
    Oladokun O, Ahmad A, Abdullah TAT, Nyakuma BB, Bello AAH, Al-Shatri AH. Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica. Appl Therm Eng (Internet). 2016;105:931–40.  https://doi.org/10.1016/j.applthermaleng.2016.04.165.CrossRefGoogle Scholar
  12. 12.
    Brachi P, Miccio F, Miccio M, Ruoppolo G. Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Process Technol (Internet). 2016;154:243–50.  https://doi.org/10.1016/j.fuproc.2016.09.001.CrossRefGoogle Scholar
  13. 13.
    Bui HH, Tran KQ, Chen WH. Pyrolysis of microalgae residues—a kinetic study. Bioresour Technol (Internet). 2015;199:362–6.  https://doi.org/10.1016/j.biortech.2015.08.069.CrossRefGoogle Scholar
  14. 14.
    Yurdakul S. Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry. Renew Energy (Internet). 2016;89:215–23.  https://doi.org/10.1016/j.renene.2015.12.034.CrossRefGoogle Scholar
  15. 15.
    Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Junges J, et al. Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Prot (Internet). Institution of Chemical Engineers; 2017;109:478–88. http://linkinghub.elsevier.com/retrieve/pii/S0957582017301465.CrossRefGoogle Scholar
  16. 16.
    Brachi P, Miccio F, Miccio M, Ruoppolo G. Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process Technol (Internet). 2015;130:147–54.  https://doi.org/10.1016/j.fuproc.2014.09.043.CrossRefGoogle Scholar
  17. 17.
    Tran K, Bui H, Chen W. Distributed activation energy modelling for thermal decomposition of microalgae residues. Chem Eng Trans. 2016;50:175–80.Google Scholar
  18. 18.
    Bianchi O, Castel CD, de Oliveira RVB, Bertuoli PT, Hillig É. Nonisothermal degradation of wood using thermogravimetric measurements. Polímeros. 2010;20:395–400.CrossRefGoogle Scholar
  19. 19.
    Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab (Internet). 2008 [cited 2014 Sep 23];93:90–8. http://linkinghub.elsevier.com/retrieve/pii/S0141391007003217.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S. An approach to the solution of the inverse kinetic problem in the case of complex processes. Thermochim Acta. 1993;223:201–6.CrossRefGoogle Scholar
  21. 21.
    Ornaghi HL, Poletto M, Zattera AJ, Amico SC. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose. 2014;21:177–88.CrossRefGoogle Scholar
  22. 22.
    Wang J, Zhao H. Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. J Therm Anal Calorim. 2016;124:1635–40.CrossRefGoogle Scholar
  23. 23.
    Kim SS, Agblevor FA. Pyrolysis characteristics and kinetics of chicken litter. Waste Manag. 2007;27:135–40.CrossRefGoogle Scholar
  24. 24.
    Poletto M, Dettenborn J, Pistor V, Zeni M, Zattera AJ. Materials produced from plant biomass. Part I : evaluation of thermal stability and pyrolysis of wood 3. Results and discussion. Mater Res. 2010;13:375–9.CrossRefGoogle Scholar
  25. 25.
    Zhang X, Xu M, Sun R, Sun L. Study on biomass pyrolysis kinetics. Proc GT2005 (Internet). 2005;ASME Turbo:1–5. http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/gt2005/72539/.
  26. 26.
    Amutio M, Lopez G, Alvarez J, Moreira R, Duarte G, Nunes J, et al. Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem Eng Res Des (Internet). 2013;91:2682–90.  https://doi.org/10.1016/j.cherd.2013.05.031.CrossRefGoogle Scholar
  27. 27.
    Tran KQ, Bach QV, Trinh TT, Seisenbaeva G. Non-isothermal pyrolysis of torrefied stump—a comparative kinetic evaluation. Appl Energy. 2014;136:759–66.CrossRefGoogle Scholar
  28. 28.
    Skodras G, Grammelis P, Basinas P, Kakaras E, Sakellaropoulos G. Pyrolysis and combustion characteristics of biomass and waste-derived feedstock. Ind Eng Chem Res (Internet). 2006;45:3791–9. http://pubs.acs.org/doi/abs/10.1021/ie060107g.CrossRefGoogle Scholar
  29. 29.
    Mui ELK, Cheung WH, Lee VKC, McKay G. Compensation effect during the pyrolysis of tyres and bamboo. Waste Manag. 2010;30:821–30.CrossRefGoogle Scholar
  30. 30.
    Ali I, Bahadar A. Red Sea seaweed (Sargassum spp.) pyrolysis and its devolatilization kinetics. Algal Res. 2017;21:89–97.CrossRefGoogle Scholar
  31. 31.
    Ghaly AE, MacDonald KN. Drying of poultry manure for use as animal feed. Am J Agric Biol Sci (Internet). 2012;7:239–54. http://thescipub.com/PDF/ajabssp.2012.239.254.pdf.CrossRefGoogle Scholar
  32. 32.
    Becker EW. Micro-algae as a source of protein. Biotechnol Adv (Internet). 2007;25:207–10. http://www.sciencedirect.com/science/article/pii/S073497500600139X.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Janaína Junges
    • 1
  • Gabriela Carvalho Collazzo
    • 2
  • Daniele Perondi
    • 1
  • Adalberto Ayjara Dornelles Filho
    • 3
  • Suelem Daiane Ferreira
    • 1
  • Aline Dettmer
    • 4
  • Eduardo Osório
    • 1
  • Marcelo Godinho
    • 5
    Email author return OK on get
  1. 1.Postgraduate Program in Mining Engineering, Metallurgical and MaterialsFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Department of Chemical EngineeringFederal University of Santa MariaSanta MariaBrazil
  3. 3.Brazilian Institute of Geography and Statistics (IBGE)Porto AlegreBrazil
  4. 4.Chemical Engineering DepartmentUniversity of Passo Fundo (UPF)São José, Passo FundoBrazil
  5. 5.Postgraduate Program in Engineering Processes and TechnologiesUniversity of Caxias do Sul (UCS)Caxias do SulBrazil

Personalised recommendations