Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1385–1393 | Cite as

Are nonisothermal kinetics fearing historical Newton’s cooling law, or are just afraid of inbuilt complications due to undesirable thermal inertia?

  • Jaroslav Šesták


Although the Newton cooling law has been known for three centuries, the nonisothermal kineticists are still ignoring its consequent heat inertia effect when calculating widely cited activation energies. The kinetic background is revised. The features and significances of heat transfer are analyzed and shown in its historical occurrence. DTA equation is revised as well as the Tian calorimetric relation showing the necessity of heat inertia inclusion. The authority of traditional practice of kinetic analysis is revealed and discussed in more detail including the problems and perspectives of nontraditional ideas regarding the mainstream.


Kinetics Nonisothermal Activation energy Heat inertia DTA equation Calorimetry Citation Data credibility 



The present work was supported by (the CENTEM Project, Reg. No. CZ.1.05/2.1.00/03.0088 that is co-funded from the ERDF as a part of the MEYS—Ministry of Education, Youth and Sports OP RDI Program and, in the follow-up sustainability stage supported through the CENTEM PLUS LO 1402). Kind attention by deceased Pavel Holba is belatedly and exceedingly appreciated as well as the friendly cooperation with the JTAC editor Alfréd Kállay-Menyhárd.


  1. 1.
    Editorial. Beware the impact factor. Nat Mater. 2013;12:89–91.Google Scholar
  2. 2.
    Fiala J, Mareš JJ, Šesták J. Reflections on how to evaluate the professional value of scientific papers and their corresponding citations. Scientometrics. 2018. Scholar
  3. 3.
    Šesták J, Fiala J, Gavrichev K. Evaluation of the professional worth of scientific papers, their citation responding and the publication authority. J Therm Anal Calorim. 2018;131:463–71.Google Scholar
  4. 4.
    Galwey AK, Brown ME. Application of the Arrhenius equation to solid-state kinetics: can this be justified? Thermochim Acta. 2002;386:91–8.Google Scholar
  5. 5.
    Galwey AK. What it meant by the term ‘variable activation energy’ when applied in the kinetic analysis of solids? Thermochim Acta. 2003;397:49–268.Google Scholar
  6. 6.
    Galwey AK. What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition? J Therm Anal Calorim. 2006;86:267–86.Google Scholar
  7. 7.
    Málek J. The kinetic analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.Google Scholar
  8. 8.
    Šesták J, Málek J. Diagnostic limits of phenomenological models of heterogeneous reactions and thermoanalytical kinetics. Solid State Ionics. 1993;63(65):254–9.Google Scholar
  9. 9.
    Koga N. Physico-geometric kinetics of solid-state reactions by thermal analysis. J Therm Anal. 1997;49:45–56.Google Scholar
  10. 10.
    Vyazovkin S, Wight CA. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.Google Scholar
  11. 11.
    Málek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid state processes. J Mater Res. 2001;16:1862–71.Google Scholar
  12. 12.
    Starink MJ. Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics: a review. Int Mater Rev. 2004;49:191.Google Scholar
  13. 13.
    Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.Google Scholar
  14. 14.
    Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter. J Therm Anal Calorim. 2012;110:5–16.Google Scholar
  15. 15.
    Šesták J. The quandary aspects of nonisothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta. 2015;611:26–35.Google Scholar
  16. 16.
    Vold MJ. Differential thermal analysis. Anal Chem. 1949;21:683–8.Google Scholar
  17. 17.
    Smyth HT. Temperature distribution during mineral inversion and its significance in DTA. J Am Ceram Soc. 1951;34:221–4.Google Scholar
  18. 18.
    Boersma SL. A theory of DTA and new methods of measurement and interpretation. J Am Ceram Soc. 1955;38:281–4.Google Scholar
  19. 19.
    Borchadt HJ. Differential thermal analysis. J Chem Educ. 1956;33:103–9.Google Scholar
  20. 20.
    Borchard HJ, Daniels F. The application of DTA to the study of reaction kinetics. J Am Chem Soc. 1957;79:41–6.Google Scholar
  21. 21.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  22. 22.
    Freeman ES, Carrol B. The application of thermoanalytical techniques to reaction kinetics. J Phys Chem. 1958;62:394–7.Google Scholar
  23. 23.
    Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285.Google Scholar
  24. 24.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.Google Scholar
  25. 25.
    Piloyan GO, Ryabchikov IO, Novikova SO. Determination of activation energies of chemical reactions by DTA. Nature. 1966;3067:1229.Google Scholar
  26. 26.
    Gray AP. Simple generalized theory for analysis of dynamic thermal measurements. In: Porter RS, Johnson JF, editors. Analytical calorimetry, vol. 1. New York: Plenum Press; 1968. p. 209–2016.Google Scholar
  27. 27.
    Holba P, Nevřiva M, Šesták J. Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta. 1978;23:223–31.Google Scholar
  28. 28.
    Piloyan GO. Bвeдeниe в тeopию тepмичecкoгo aнaлизa (Introduction in theory of thermal analysis), Izd. Moskva: Nauka; 1964 (in Russian).Google Scholar
  29. 29.
    Garn PD. Thermal analysis of investigation. New York: Academic; 1965.Google Scholar
  30. 30.
    Smykats-Kloss W. Differential thermal analysis. Berlin: Springer; 1974.Google Scholar
  31. 31.
    Pope MI, Judd MD. Differential thermal analysis. London: Heyden; 1977.Google Scholar
  32. 32.
    Heines PJ, Reading M, Wilburn FW. Differential thermal analysis and differential scanning calorimetry. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry, vol. 1. Amsterdam: Elsevier; 2008. p. 279–361.Google Scholar
  33. 33.
    Höhne GWH, Hemminger W, Flammersheim HJ. Differential scanning calorimetry. Dortrecht: Springer; 2010.Google Scholar
  34. 34.
    Chen R, Kirsh Y. Methods for evaluating parameters from thermally stimulated curves. In: Chen R, Kirsh Y, editors. Analysis of thermally stimulated processes, chapter 6. Oxford: Pergamon Press; 1981. p. 109–110.Google Scholar
  35. 35.
    Šesták J. Theory and practice of differential thermal analysis. In: Thermophysical properties of solids: theoretical thermal analysis, chapter 12. Amsterdam: Elsevier; 1984. p. 303–338. Russian translation by Mir, Moscow 1988, pp. 312–346.Google Scholar
  36. 36.
    Boerio-Goates J, Callen JE. Differential thermal methods. In: Rossiter BW, Beatzold RC, editors. Determination of thermodynamic properties, chapter 8. New York: Wiley; 1992. p. 621–718.Google Scholar
  37. 37.
    Šesták J, Holba P. Heat inertia and temperature gradient in the treatment of DTA peaks: existing on every occasion of real measurements but until now omitted. J Therm Anal Calorim. 2013;113:1633–43.Google Scholar
  38. 38.
    Šesták J, Holba P, Lombardi G. Quantitative evaluation of thermal effects: theory and practice. Annali di Chimica (Roma). 1977;67:73–87.Google Scholar
  39. 39.
    Šesták J. Calorimetry: determination of changes in thermal properties. In: Thermophysical properties of solids: theoretical thermal analysis, chapter 11. Amsterdam: Elsevier; 1984. p. 278–299. Translated from the Czech source published by Academia, Praha 1982, pp. 206–225.Google Scholar
  40. 40.
    Holba P, Šesták J, Sedmidubský D. Heat transfer and phase transition in DTA experiment. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics, chapter 5. Berlin: Springer; 2013. p. 99–134.Google Scholar
  41. 41.
    Holba P, Šesták J. Heat inertia and its role in thermal analysis. J Therm Anal Calorim. 2015;121:303–7.Google Scholar
  42. 42.
    Zemansky MW, Dittman RH. Heat and thermodynamics. New York: McGraw-Hill; 1981.Google Scholar
  43. 43.
    Newton I. Scale graduum caloris. calorum descriptiones and signa. Philos Trans. 1701;22:824–9.Google Scholar
  44. 44.
    Holman SW. Calorimetry: Methods of cooling correction. Proc Am Acad Arts Sci. 1895/1896; 31:245–254.Google Scholar
  45. 45.
    O’Sullivan CT. Newton’s law of cooling—a critical assessment. Am J Phys. 1990;58:956–60.Google Scholar
  46. 46.
    Simms DL. Newton’s contribution to the science of heat. Ann Sci. 2004;61:33–77.Google Scholar
  47. 47.
    Besson U. The history of the cooling law: when the search for simplicity can be an obstacle. Sci Educ. 2012;21:1085–110.Google Scholar
  48. 48.
    Koštial P, Špička I, Jančíková Z, Valíček V, Harničárová M, Hlinka J. On experimental thermal analysis of solid materials. Meas Sci Rev. 2014;14:317–22.Google Scholar
  49. 49.
    Mondol A, Gupta R, Das S, Dutta T. An insight into Newtons cooling law using fractional calculus. J Appl Phys. 2018;123:064901.Google Scholar
  50. 50.
    Šesták J. Why nonisothermal kineticists are afraid of incorporating the Newton cooling law into their theories. Thermochim Acta. MS: TCA-D-16-00720 (2016), refused already by the personal decision of editor and not after the standard peer reviewing.Google Scholar
  51. 51.
    Hulbert HF. Models for solid-state reactions in powdered compacts: a review. J Br Ceram Soc. 1969;6:11–20.Google Scholar
  52. 52.
    Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.PubMedGoogle Scholar
  53. 53.
    Liu F, Sommer F, Bos C, Mittemeijer EJ. Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev. 2007;52:193–9.Google Scholar
  54. 54.
    Koga N, Šesták J, Šimon P. Some fundamental and historical aspects of phenomenological kinetics in solid-state studied by thermal analysis. In: Šesták J, Šimon P, editors. Thermal analysis of Micro-, nano- and non-crystalline materials, chapter 1. Berlin: Springer; 2013. p. 1–45.Google Scholar
  55. 55.
    Muravyev NV, Koga N, Meerov DB, Pivkina AN. Kinetic analysis of overlapping thermal decomposition comprising exothermic and endothermic processes. Phys Chem Chem Phys. 2017;19:3254–64.PubMedGoogle Scholar
  56. 56.
    Liaviskaya T, Guigo N, Sbirrazzucii N, Vyazovkin S. Further insight into the kinetics of thermal decomposition during continuous cooling. Phys Chem Chem Phys. 2017;19:18836–44.Google Scholar
  57. 57.
    Šesták J. Thermal inertia as an omitted consequence of Newton cooling law affecting the determination correctness of activation energies from nonisothermal kinetic measurements. Phys Chem Chem Phys. MS: CP-ART-03-2018-001457 (2018), refused already by the personal decision of editor and not after the standard peer reviewing.Google Scholar
  58. 58.
    Hammam MAS, Mabdel-Rahim A, Hafiz MM, Abu-Sehly AA. New combination of non-isothermal kinetics-revealing methods. J Therm Anal Calorim. 2017;128:1391–405.Google Scholar
  59. 59.
    Kosowska-Golachowska M. Thermal analysis and kinetics of coal during oxy-fuel combustion. J Therm Sci. 2017;26:355–61.Google Scholar
  60. 60.
    Kithery J. Nonisothermal crystallization in BaO–Fe2O3–P2O5 glasses. J Therm Anal Calorim. 2018;131:241–8.Google Scholar
  61. 61.
    Brandová D, Svoboda R, Zmrhalová ZO, Chovance J, Bulánek R, Romanová J. Crystallization kinetics of glass materials: the ultimate kinetic complexity. J Therm Anal Calorim. 2018. Scholar
  62. 62.
    Tian A. Recherches sur le Thermostats; Contribution a l´étude du reglage—thermostats a engeintes multiples. J Chim Phys. 1923;20:132–66.Google Scholar
  63. 63.
    Tian A. Recherches sue la calorimétrie. Généralisation de la méthode de compensation électrique: Microcalorimétrie. J Chim Phys. 1933;30:665–708.Google Scholar
  64. 64.
    Calvet E, Prat H. Recent progress in microcalorimetry. Oxford: Pergamon Press; 1963.Google Scholar
  65. 65.
    Marsh KN. Calorimetry. In: Spencer ND, Moore JH, editors. Encyclopedia of chemical physics and physical chemistry: fundamentals, chapter B1.27. Boca Raton: CRC Press; 2001. p. 1681–700.Google Scholar
  66. 66.
    Sarge SM, Höhne GWH, Hemminger W. Calorimetry: fundamentals, instrumentation and applications. New York: Wiley; 2014.Google Scholar
  67. 67.
  68. 68.
    Svoboda H, Šesták J. A new approach to DTA calibration by predetermined amount of Joule heat via rectangular pulses. In: Thermal Analysis (I. Buzas Editor), proc. 4th ICTA, Akademia Kiado, Budapest; 1974, pp. 726–731.Google Scholar
  69. 69.
    Barale S, Vincent L, Sauder G, Sbirrazzuoli N. Deconvolution of calorimeter response from electrical signals for extracting kinetic data. Thermochim Acta. 2015;615:30–7.Google Scholar
  70. 70.
    Koch E. Non-isothermal reaction kinetics. New.York: Academic Press; 1977.Google Scholar
  71. 71.
    Segal E, Fatu D. Introduction to nonisothermal kinetics. Bucharest: Editura Academie RSF; 1983 (in Romanian).Google Scholar
  72. 72.
    Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Berlin: Springer; 2015.Google Scholar
  73. 73.
    Wissenschaftliche Selbstbiographie. Mit einem Bildnis und der von Max von Laue gehaltenen Traueransprache. Johann Ambrosius Barth Verlag (Leipzig 1948), p. 22, as translated in Scientific Autobiography and Other Papers, trans. F. Gaynor (New York, 1949), pp. 33–34 (as cited in T. S. Kuhn, The Structure of Scientific Revolutions).Google Scholar
  74. 74.
    Avramov I, Šesták J. Generalized kinetics of overall phase transition explicit to crystallization. J Therm Anal Calorim. 2014;118:1715–20.Google Scholar
  75. 75.
    Šesták J. The Šesták-Berggren equation: now questioned but formerly celebrated—what is right? J Therm Anal Calorim. 2017;127:1117–23.Google Scholar
  76. 76.
    Holba P, Šesták J. The role of heat transfer and analysis ensuing heat inertia in thermal measurements and its impact to nonisothermal kinetics. In: Šesták J, Hubík P, Mareš JJ, editors. Thermal physics and thermal analysis: from macro to micro highlighting thermodynamics, kinetics and nanomaterials, chapter 15. Berlin: Springer; 2017. p. 319–44.Google Scholar
  77. 77.
    Šesták J. Is the original Kissinger equation obsolete today—not obsolete the entire non-sothermal kinetics while ignoring heat inertia? J Therm Anal Calorim. 2014;117:1173–7.Google Scholar
  78. 78.
    Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem. 2014;40:486–95.Google Scholar
  79. 79.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.Google Scholar
  80. 80.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.Google Scholar
  81. 81.
    Wikipedia—the free encyclopedia. 2014.
  82. 82.
    Williams-Leir G. Effective thermal inertia in relation to normalized heat load. Fire Mater. 1984;8:77–80.Google Scholar
  83. 83.
    Cracknel AP, Xue Y. Thermal inertia determination—a tutorial review. Int J Remote Sens. 1996;17:431–61.Google Scholar
  84. 84.
    Mouchina E, Kaisersberger E. Temperature dependence of the time constants for deconvolution of heat flow curves. Thermochim Acta. 2009;492:101–9.Google Scholar
  85. 85.
    Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M. Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta. 2014;589:37–46.Google Scholar
  86. 86.
    Lerchner JA, Wolf G, Wolf J. Recent developments in integrated circuit calorimetry. J Therm Anal Calorim. 1999;57:241.Google Scholar
  87. 87.
    Minakov AA, Schick C. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum. 2007;78:073902e10.Google Scholar
  88. 88.
    Šesták J. Kinetic phase diagrams as a consequence of radical changing temperature or particle size. J Therm Anal Calorim. 2015;120:129–37.Google Scholar
  89. 89.
    Šesták J. Thermal science and analysis: terms connotation, history, development, and the role of personalities. J Therm Anal Calorim. 2013;113:1049–54.Google Scholar
  90. 90.
    Šesták J. Measuring ‘hotness’, should the sensor’s readings for rapid temperature changes be named ‘tempericity’? J Therm Anal Calorim. 2016;125:991–9.Google Scholar
  91. 91.
    Holba P. Šesták’s proposal of term “tempericity” for non-equilibrium temperature and modified Tykodi’s thermal science classification with regards to methods of thermal analysis. J Therm Anal Calorim. 2017;127:2553–9.Google Scholar
  92. 92.
    Šesták J. Omitted consequence of Newton cooling law affected the determination accuracy of activation energies from nonisothermal measurements. Nature. MS: 2017-01-01289A-Z, refused already by the personal decision of editor and not after the standard peer reviewing.Google Scholar
  93. 93.
    Brown ME. Stocking in the kinetics cupboard. J Therm Anal Calorim. 2005;82:665–9.Google Scholar
  94. 94.
    Tsang EWK, Frey SB. The As-Is journal review process: let authors own their ideas. Acad Manag Learn Educ. 2017;6:128–36.Google Scholar
  95. 95.
    Šesták J. Quo vadis Domine of Nonisothermal Kinetics, under the course of preparation for next ICTAC meeting 2020.Google Scholar
  96. 96.
    Stávek J, Šípek M, Šesták J. Application of the principle of least action to some self-organized chemical reactions. Thermochim Acta. 2002;388:440.Google Scholar
  97. 97.
    Kalva Z, Šesták J. Transdiciplinary aspects of diffusion and magnetocaloric effect. J Therm Anal Calorim. 2004;76:1–5.Google Scholar
  98. 98.
    Mareš JJ, Šesták J. An attempt at quantum thermal physics. J Therm Anal Calorim. 2005;82:681–6.Google Scholar
  99. 99.
    Mareš JJ, Stávek J, Šesták J. Quantum diffusion and self-organized periodic chemical reaction. J Chem Phys. 2004;121:1499–503.PubMedGoogle Scholar
  100. 100.
    Mareš JJ, Šesták J, Hubík P. Transport constitutive relations, quantum diffusion and periodic reactions. In: Šesták J, Mareš JJ, Hubík P, editors. Glassy, amorphous and nano-crystalline materials, chapter 14. Berlin: Springer; 2011. p. 227–44.Google Scholar
  101. 101.
    Šesták J, Mareš JJ, Hubík P, Stávek J. Self-organized periodic processes: from macro-layers to micro-world of diffusion and down to the quantum aspects of light. In: Šesták J, Hubík P, Mareš JJ, editors. Thermal physics and thermal analysis: from macro to micro highlighting thermodynamics, kinetics and nanomaterials, chapter 6. Berlin: Springer; 2017. p. 131–58.Google Scholar
  102. 102.
    Maupertuis PLM. Oevres de Maupertuis, vol. IV. Paris: Alyon; 1768. p. 36.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.New Technology - Research Center in the Westbohemian RegionUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations