Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 136, Issue 3, pp 1093–1101 | Cite as

The crystallization of polypropylene/halloysite fibers

  • Mária Petková
  • Jozef Ryba
  • Veronika Hrabovská
  • Anna UjhelyiováEmail author
  • Marcela Hricová
Article
  • 69 Downloads

Abstract

The halloysite (HNT) in the form of nanotubes was used as an agent for the improved mechanical, thermo-mechanical as well as surface properties of polypropylene (PP) fibers. The halloysite is the nanoadditive that can affect differently the crystallization of PP in the non-oriented and oriented systems. The structure and mechanical properties of PP and PP/HNT fibers depended on the crystallinity and crystallization kinetics of PP at the fiber preparation. The Avrami method on the determination of isothermal crystallization kinetics parameters as well as an estimation of melting and crystallization temperatures and melting and crystallization enthalpies was used for the study of thermal behavior of polypropylene/halloysite non-oriented and oriented blends and fibers. Morphological structure, mechanical and thermo-mechanical properties of polypropylene/halloysite fibers were observed. An influence on all assessed properties was evaluated from the point of halloysite content in the PP and/or PP fibers. The increased HNT content in the non-oriented PP/HNT blends at the isothermal crystallization increases the rate crystallization (decreased t1/2 and free energy σe, increased K) of PP in comparison with the pure PP. The crystallinity of PP in the oriented PP/HNT fibers is not primarily affected by addition of the HNT content 3 mass% and does not change their mechanical and thermo-mechanical properties. 5 mass% HNT increases the crystallinity of PP in PP/HNT fibers expressing mainly the decrease in tenacity at the break, Young’s modulus and shrinkage.

Keywords

Polypropylene (PP) fibers Halloysite additive Crystallization Thermal and mechanical properties 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the Contract No: APVV-14-0175.

References

  1. 1.
    Guo B, Zou Q, Lei Y, Jia D. Structure and performance of polyamide 6/halloysite nanotubes nanocomposites. Polym J. 2009;41:835–42.CrossRefGoogle Scholar
  2. 2.
    Lecouvet B, Sclavons M, Bourbigot S, Devaux J, Bailly C. Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer. 2011;52:4284–95.CrossRefGoogle Scholar
  3. 3.
    Sandip R, Amit D, Gert H. Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur Polym J. 2011;47:1746–55.CrossRefGoogle Scholar
  4. 4.
    Mingliang D, Baochun G, Demin J. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J. 2006;42:1362–9.CrossRefGoogle Scholar
  5. 5.
    Pei-Zhang Z, Yue-Fei Z, Xiang-Feng L. Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132:1845–52.CrossRefGoogle Scholar
  6. 6.
    Sajed F, Mehdi H. Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites. J Therm Anal Calorim. 2017;130:2069–78.CrossRefGoogle Scholar
  7. 7.
    Bo L, Runlai L. Preparation and property of ultrahigh molecular weight polyethylene/halloysite nanotube fiber. Fibers and Polymers. 2016;17(7):1043–7.CrossRefGoogle Scholar
  8. 8.
    Bin H, Xiang-Feng L, Yue-Fei Z. Effect of a novel compound nucleating agent calcium sulfate whiskers/β-nucleating agents dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;132:1145–52.CrossRefGoogle Scholar
  9. 9.
    Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Intern. 2010;59:574–95.Google Scholar
  10. 10.
    Wang B, Huang H-X. Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab. 2013;98:1601–8.CrossRefGoogle Scholar
  11. 11.
    Yuan P, Tan D, Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci. 2015;112–112:75–93.CrossRefGoogle Scholar
  12. 12.
    Du M, Guo B, Wan J, Zou Q, Jia D. Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res. 2010;17:109–18.CrossRefGoogle Scholar
  13. 13.
    Guo B, Zou Q, Lei Y, Du M, Liu M, Jia D. Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta. 2009;484:48–56.CrossRefGoogle Scholar
  14. 14.
    Liu MX, Guo BC, Du ML, Chen F, Jia DM. Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer. 2009;50:3022–30.CrossRefGoogle Scholar
  15. 15.
    Wu W, Wagner MH, Xu Z. Surface treatment mechanism of nano-SiO2 and the properties of PP/nano-SiO2 composite Materials. Colloid Polym Sci. 2003;281:550–5.CrossRefGoogle Scholar
  16. 16.
    Naffakh M, Martín Z, Marco C, Gómez MA, Jiménez I. Isothermal crystallization kinetics of isotactic PP with inorganic fullerene-like WS2 nanoparticles. Thermochim Acta. 2008;472:11–6.CrossRefGoogle Scholar
  17. 17.
    Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in PP/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–28.CrossRefGoogle Scholar
  18. 18.
    Zhang QX, Yu ZZ, Xie XL, Mai YW. Crystallization and impact energy of PP/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45:5985–94.CrossRefGoogle Scholar
  19. 19.
    Chan ChM, Wu J, Li JX, Cheung YK. PP/calcium carbonate nanocomposites. Polymer. 2002;43:2981–92.CrossRefGoogle Scholar
  20. 20.
    Yiping H, Guangmei Ch, Zhen Y, Hongwu L, Yong W. Non-isothermal crystallization behaviour of PP with nucleating agents and nano-calcium carbonate. Eur Polym J. 2005;41:2753–60.CrossRefGoogle Scholar
  21. 21.
    Marcinčin A, Hricová M, Ujhelyiová A, Brejka O, Michlík P, Dulíková M, Strecká Z, Chmela S. Effect of inorganic (nano)fillers on the UV barrier properties, photo and thermal degradation of PP fibers. Fibers Text East Eur. 2009;17:29–35.Google Scholar
  22. 22.
    Chuah KP, Gan SN, Chee KK. Determination of Avrami exponent by differential scanning calorimetry for non-isothermal crystallization of polymers. Polymer. 1998;40:253–9.CrossRefGoogle Scholar
  23. 23.
    Cho K, Li F, Choi J. Crystallization and melting behaviour of PP and maleated PP blends. Polymer. 1999;40:1719–29.CrossRefGoogle Scholar
  24. 24.
    Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.CrossRefGoogle Scholar
  25. 25.
    Avrami MJ. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177.CrossRefGoogle Scholar
  26. 26.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.CrossRefGoogle Scholar
  27. 27.
    Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J Non-cryst Solids. 1993;162:1–12.CrossRefGoogle Scholar
  28. 28.
    Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-cryst Solids. 1993;162:13–25.CrossRefGoogle Scholar
  29. 29.
    Mandelkern L. Crystallization of polymers. New York: McGraw-Hill; 1994. p. 306.Google Scholar
  30. 30.
    Sharples A. Overall kinetics of crystallization. In: Sharples A, editor. Introduction to polymer crystallization. London: Edward Arnold; 1996. p. 44–59.Google Scholar
  31. 31.
    Zhang W, Hu Z, Zhang Y, Lu C, Deng Y. Gel-spun fibers from magnesium hydroxide nanoparticles and UHMWPE nanocomposite: the physical and flammability properties. Compos B. 2013;51:276–81.CrossRefGoogle Scholar
  32. 32.
    Petkova M, Hýlová M, Ujhelyiová A. Physical modification of polypropylene fibers used in construction. J Text Inst. 2017;108(2):196–202.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Plastics, Rubber and Fibers, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovak Republic

Personalised recommendations