Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1823–1828 | Cite as

Effect of aluminum morphology on thermal decomposition of ammonium perchlorate

  • Shengjun Zheng
  • Jie LiuEmail author
  • Yikai Wang
  • Fengsheng Li
  • Lei Xiao
  • Xiang Ke
  • Gazi Hao
  • Wei Jiang
  • Duo Li
  • Ying Li
  • Zhiguo Lan
Article
  • 49 Downloads

Abstract

In this paper, two kinds of flake aluminum powder are prepared by bidirectional rotation mill using the spherical aluminum powder (Al-1) as raw materials. The morphology and particle size distribution of Al powder are analyzed using scanning electron microscopy and laser particle size analyzer. At the same time, the catalytic performances of the Al-1 and as-prepared Al powder on the thermal decomposition of ammonium perchlorate (AP) are studied through thermogravimetric and differential scanning calorimetry analysis. The results revealed that compared with pure AP, the exothermic peak temperature of AP/Al-1, AP/thicker flake Al powder (Al-2) and AP/thinner flake Al powder (Al-3) mixtures are reduced. The activation energy of AP/Al-1, AP/Al-2 and AP/Al-3 mixtures is reduced by 3.7, 16.8 and 17.6%, respectively. The reaction rate constant of AP/Al-1, AP/Al-2 and AP/Al-3 mixtures grows by 3.3, 18.0 and 32.5%, respectively.

Keywords

Aluminum morphology Ammonium perchlorate Thermal decomposition 

Notes

Acknowledgements

This work is financially sponsored by the National Natural Science Foundation of China (NSFC, 51606102) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Kadiresh PN, Sridhar BTN. Experimental study on ballistic behaviour of an aluminised AP/HTPB propellant during accelerated aging. J Therm Anal Calorim. 2010;100(1):331–5.CrossRefGoogle Scholar
  2. 2.
    Mezroua A, Khimeche K, Lefebvre MH, et al. The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim. 2014;116(1):279–86.CrossRefGoogle Scholar
  3. 3.
    Sovizi MR, Fakhrpour G, Madram AR. Comparison of thermal degradation behavior of epoxy/ammonium perchlorate composite propellants. J Therm Anal Calorim. 2017;129(1):401–10.CrossRefGoogle Scholar
  4. 4.
    Kohga M. Burning characteristics and thermochemical behavior of AP/HTPB composite propellant using coarse and fine AP particles. Propellants Explos Pyrotech. 2015;36(1):57–64.Google Scholar
  5. 5.
    Rocco JAFF, Lima JES, Frutuoso AG, et al. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75(2):551–7.CrossRefGoogle Scholar
  6. 6.
    Yang ZJ, Gong FY, Ding L, et al. Efficient sensitivity reducing and hygroscopicity preventing of ultra-fine ammonium perchlorate for high burning rate propellants. Propellants Explos Pyrotech. 2017;42(7):805–19.CrossRefGoogle Scholar
  7. 7.
    Kohga M, Tsuzuki H. Burning-rate characteristics of composite propellant using ammonium perchlorate modified by ethylene glycol. J Propul Power. 2015;27(3):668–74.CrossRefGoogle Scholar
  8. 8.
    Li X, Liu X, Cheng Y, Li Y, Mei X. Thermal decomposition properties of double-base propellant and ammonium perchlorate. J Therm Anal Calorim. 2014;115(1):887–94.CrossRefGoogle Scholar
  9. 9.
    Kohga M. Burning characteristics and thermochemical behavior of AP/HTPB composite propellant using coarse and fine AP particles. Propellants Explos Pyrotech. 2015;36(1):57–64.Google Scholar
  10. 10.
    Singh Kapoor IP, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2009;34(4):351–6.CrossRefGoogle Scholar
  11. 11.
    Liu H, Jiao Q, Zhao Y, et al. Cu/Fe hydrotalcite derived mixed oxides as new catalyst for thermal decomposition of ammonium perchlorate. Mater Lett. 2010;64(15):1698–700.CrossRefGoogle Scholar
  12. 12.
    Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17(2):135–49.CrossRefGoogle Scholar
  13. 13.
    Sadeghipour S, Ghaderian J, Wahid MA. Advances in aluminum powder usage as an energetic material and applications for rocket propellant.  American Institute of Physics; 2012. pp.100–8.Google Scholar
  14. 14.
    Arkhipov VA, Korotkikh AG. The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. Combust Flame. 2012;159(1):409–15.CrossRefGoogle Scholar
  15. 15.
    Jayaraman K, Anand KV, Bhatt DS, et al. Production, characterization, and combustion of nanoaluminum in composite solid propellants. J Propul Power. 2012;25(2):471–81.CrossRefGoogle Scholar
  16. 16.
    Zhu YL, Huang H, Ren H, et al. Effects of aluminum nanoparticles on thermal decomposition of ammonium perchlorate. J Korean Chem Soc. 2013;57(1):666–71.CrossRefGoogle Scholar
  17. 17.
    Stephens M, Sammet T, Petersen E, et al. Performance of ammonium-perchlorate-based composite propellant containing nanoscale aluminum. J Propul Power. 2010;26(3):461–6.CrossRefGoogle Scholar
  18. 18.
    Zhi J, Tian-Fang W, Shu-Fen L, et al. Thermal behavior of ammonium perchlorate and metal powders of different grades. J Therm Anal Calorim. 2006;85(2):315–20.CrossRefGoogle Scholar
  19. 19.
    Liu L, Li F, Tan L, et al. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2004;29(1):34–8.CrossRefGoogle Scholar
  20. 20.
    Li FS. Bi-directional rotation mill, Chinese Patent: (2006) ZL 200610096755.1.Google Scholar
  21. 21.
    Guillory WA, King M. Thermal decomposition of ammonium perchlorate. AIAA J. 2015;8(6):1134–6.CrossRefGoogle Scholar
  22. 22.
    Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36.CrossRefGoogle Scholar
  23. 23.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  24. 24.
    Rodríguez-Díaz JM, Santos-Martín MT. Study of the best designs for modifications of the Arrhenius equation. Chemom Intell Lab Syst. 2009;95(2):199–208.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.National Special Superfine Powder Engineering Research Center of China, School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Shanxi North Xing’an Chemical Industry Co. Ltd.TaiyuanChina

Personalised recommendations