Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1637–1646 | Cite as

Synergistic effects and flame-retardant mechanism of aluminum diethyl phosphinate in combination with melamine polyphosphate and aluminum oxide in epoxy resin

  • Liu Zhong
  • Kai-Xin Zhang
  • Xu Wang
  • Ming-Jun ChenEmail author
  • Fei Xin
  • Zhi-Guo LiuEmail author


In this work, the melamine polyphosphate (MPP) and aluminum oxide (Al2O3) were used to investigate their synergistic effects with aluminum diethyl phosphinate (AlPi) on enhancing the flame retardancy of epoxy resins (EP). The results indicated that low loadings of only 3.2 mass% AlPi, 1.6 mass% MPP and 0.2 mass% Al2O3 can make EP get high LOI value of 33.5% and UL-94 V-0 rating. The results also showed that the multi-component system of AlPi, MPP and Al2O3 in appropriate mixing ratio had good smoke suppression effect. The total smoke production of flame-retarded EP was decreased by as much as 64% compared with EP. Joint analysis by multiple techniques of cone calorimeter test, thermogravimetric analysis (TGA), Fourier infrared spectra (FTIR), X-ray photoelectron spectroscopy and TGA coupling FTIR was shown that the flame-retardant mechanisms of the flame-retarded EP by loading of AlPi, MPP and Al2O3 were proposed as synergistic mechanism in gas and condensed phase. The excellent flame retardancy of EP/AlPi/MPP/Al2O3 composite was improved by the formation of protective char layer from the high valence phosphorus compounds in the residual char.


Aluminum diethyl phosphinate Synergetic flame retardant Flame-retardant mechanism Flame-retardant epoxy resin 



This work was financially supported by the National Natural Science Youth Foundation of China (21504071) and the National Natural Science Foundation of China (51403007), and the Key Project of the Education Department of Sichuan Province (16ZA0159).


  1. 1.
    Ellis B. Chemistry and technology of epoxy resin. London: Blackie Academic & Professional; 1993.CrossRefGoogle Scholar
  2. 2.
    Agubra VA, Mahesh HV. Environmental degradation of E-glass/nanocomposite under the combined effect of UV radiation, moisture, and rain. J Polym Sci Part B Polym Phys. 2014;52(15):1024–9.CrossRefGoogle Scholar
  3. 3.
    Acebo C, Fernandez-Francos X, Messori M, Ramis X, Serra A. Novel epoxy-silica hybrid coatings by using ethoxysilyl-modified hyperbranched poly(ethyleneimine) with improved scratch resistance. Polymer. 2014;55(20):5028–35.CrossRefGoogle Scholar
  4. 4.
    Abdollahi H, Ershad-Langroudi A, Salimi A, Rahimi A. Anticorrosive coatings prepared using epoxy-silica hybrid nanocomposite materials. Ind Eng Chem Res. 2014;53(27):10858–69.CrossRefGoogle Scholar
  5. 5.
    Toldy A, Szolnoki B, Marosi G. Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym Degrad Stab. 2011;96(3):371–6.CrossRefGoogle Scholar
  6. 6.
    Akatsuka M, Takezawa Y, Amagi S. Influences of inorganic fillers on curing reactions of epoxy resins initiated with a boron trifluoride amine complex. Polymer. 2001;42(7):3003–7.CrossRefGoogle Scholar
  7. 7.
    Jyotishkumar P, Koetz J, Tiersch B, Strehmel V, Ozdilek C, Moldenaers P, Hassler R, Thomas S. Complex phase separation in poly(acrylonitrile–butadiene–styrene)-modified epoxy/4,4′-diaminodiphenyl sulfone blends: generation of new micro- and nanosubstructures. J Phys Chem B. 2009;113(16):5418–30.CrossRefGoogle Scholar
  8. 8.
    Gu HB, Tadakamalla S, Zhang X, Huang YD, Jiang Y, Colorado HA, Luo ZP, Wei SY, Guo ZH. Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. J Mater Chem C. 2013;1(4):729–43.CrossRefGoogle Scholar
  9. 9.
    Rakotomalala M, Wagner S, Doring M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials. 2010;3(8):4300–27.CrossRefGoogle Scholar
  10. 10.
    Carja ID, Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Coroaba A, Lisa G, Lopez CG, Soriano MF, Perez VF, Sanchez MDR. A straight forward, eco-friendly and cost-effective approach towards flame retardant epoxy resins. J Mater Chem A. 2014;2(38):16230–41.CrossRefGoogle Scholar
  11. 11.
    Yang HY, Wang X, Yu B, Song L, Hu Y, Yuen RKK. Effect of borates on thermal degradation and flame retardancy of epoxy resins using polyhedral oligomeric silsesquioxane as a curing agent. Thermochim Acta. 2012;535(9):71–8.CrossRefGoogle Scholar
  12. 12.
    Wang JY, Qian LJ, Xu B, Xi W, Liu XX. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym Degrad Stab. 2015;122:8–17.CrossRefGoogle Scholar
  13. 13.
    Ma JJ, Yang JX, Huang YW, Cao K. Aluminum-organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J Mater Chem. 2012;22(5):2007–17.CrossRefGoogle Scholar
  14. 14.
    Raimondo M, Russo S, Guadagno L, Longo P, Chirico S, Mariconda A, Bonnaud L, Murariu O, Dubois P. Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Adv. 2015;5(15):10974–86.CrossRefGoogle Scholar
  15. 15.
    Murias P, Maciejewski H, Galina H. Epoxy resins modified with reactive low molecular weight siloxanes. Eur Polym J. 2012;48(4):769–73.CrossRefGoogle Scholar
  16. 16.
    Tian NN, Gong J, Wen X, Yao K, Tang T. Synthesis and characterization of a novel organophosphorus oligomer and its application in improving flame retardancy of epoxy resin. RSC Adv. 2014;4(34):17607–14.CrossRefGoogle Scholar
  17. 17.
    Chen XL, Jiao CM, Li SX, Sun J. Flame retardant epoxy resins from bisphenol-A epoxy cured with hyperbranched polyphosphate ester. J Polym Res. 2011;18(6):2229–37.CrossRefGoogle Scholar
  18. 18.
    Katsoulis C, Kandare E, Kandola BK. The effect of nanoparticles on structural morphology, thermal and flammability properties of two epoxy resins with different functionalities. Polym Degrad Stab. 2011;96(4):529–40.CrossRefGoogle Scholar
  19. 19.
    Li C, Wan JT, Kalali EN, Fan H, Wang DY. Synthesis and characterization of functional eugenol derivative based layered double hydroxide and its use as a nanoflame-retardant in epoxy resin. J Mater Chem A. 2015;3(7):3471–9.CrossRefGoogle Scholar
  20. 20.
    Liu S, Yan HQ, Fang ZP, Wang H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos Sci Technol. 2014;90(90):40–7.CrossRefGoogle Scholar
  21. 21.
    Yu B, Shi YQ, Yuan BH, Qiu SL, Xing WY, Hu WZ, Song L, Lo SM, Hu Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A. 2015;3(15):8034–44.CrossRefGoogle Scholar
  22. 22.
    Feng XM, Xing WY, Song L, Hu Y. In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. J Mater Chem A. 2014;2(33):13299–308.CrossRefGoogle Scholar
  23. 23.
    Jeng RJ, Shau SM, Lin JJ, Su WC, Chiu YS. Flame retardant epoxy polymers based on all phosphorus-containing components. Eur Polym J. 2002;38(4):683–93.CrossRefGoogle Scholar
  24. 24.
    Chen-Yang YW, Lee HF, Yuan CY. A flame-retardant phosphate and cyclotriphosphazene-containing epoxy resin: synthesis and properties. J Polym Sci A Polym Chem. 2000;38(6):972–81.CrossRefGoogle Scholar
  25. 25.
    Meenakshi KS, Sudhan EPJ, Kumar AS, Umapathy MJ. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog Org Coat. 2011;72(3):402–9.CrossRefGoogle Scholar
  26. 26.
    Perret B, Schartel B, Stoss K, Ciesielski M, Diederichs J, Doring M, Kramer J, Altstadt V. A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol Mater Eng. 2011;296(1):14–30.CrossRefGoogle Scholar
  27. 27.
    Artner J, Ciesielski M, Walter O, Doring M, Perez RM, Sandler JKW, Altstadt V, Schartel B. A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems. Macromol Mater Eng. 2008;293(6):503–14.CrossRefGoogle Scholar
  28. 28.
    Schartel B, Braun U, Balabanovich AI, Artner JB, Ciesielski M, Doring M, Perez RM, Sandler JKW, Altstadt V. Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO) -based diamino hardener. Eur Polym J. 2008;44(3):704–15.CrossRefGoogle Scholar
  29. 29.
    Jirasutsakul I, Paosawatyanyong B, Bhanthumnavind W. Aromatic phosphorodiamidate curing agent for epoxy resin coating with flame-retarding properties. Prog Org Coat. 2013;76(12):1738–46.CrossRefGoogle Scholar
  30. 30.
    Perez RM, Sandler JKW, Altstadt V, Hoffmann T, Pospiech D, Artner J, Ciesielskil M, Doring M, Balabanovich AI, Knoll U, Braun U, Schartel B. Novel phosphorus-containing hardeners with tailored chemical structures for epoxy resins: synthesis and cured resin properties. J Appl Polym Sci. 2007;105(5):2744–59.CrossRefGoogle Scholar
  31. 31.
    Gordon KL, Thompson CM, Lyon RE. Flame retardant epoxy resins containing aromatic poly(phosphonamides). High Perform Polym. 2010;22(8):945–58.CrossRefGoogle Scholar
  32. 32.
    Agrawal S, Narula AK. Curing and thermal behaviour of a flame retardant cycloaliphatic epoxy resin based on phosphorus containing poly(amideeimide)s. J Therm Anal Calorim. 2014;115(2):1693–703.CrossRefGoogle Scholar
  33. 33.
    Braun U, Schartel B, Fichera MA, Jager C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab. 2007;92(8):1528–45.CrossRefGoogle Scholar
  34. 34.
    Orhan T, Isitman NA, Hacaloglu J, Kaynak C. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate). Polym Degrad Stab. 2011;96(10):1780–7.CrossRefGoogle Scholar
  35. 35.
    Samyn F, Bourbigot S. Thermal decomposition of flame retarded formulations PA6/aluminum phosphinate/melamine polyphosphate/organo-modified clay: interactions between the constituents? Polym Degrad Stab. 2012;97(11):2217–30.CrossRefGoogle Scholar
  36. 36.
    Braun U, Bahr H, Schartel B. Fire Retardancy effect of aluminium phosphinate and melamine polyphosphate in glass fibre reinforced polyamide 6. E-Polymers. 2010;10(1):443–56.CrossRefGoogle Scholar
  37. 37.
    Sun J, Gu XY, Coquelle M, Bourbigot S, Duquesne S, Casetta M, Zhang S. Effects of melamine polyphosphate and halloysite nanotubes on the flammability and thermal behavior of polyamide 6. Polym Adv Technol. 2014;25(12):1552–9.CrossRefGoogle Scholar
  38. 38.
    Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly(butyleneterephthalate) (PBT) using metal oOxides/PBT nanocom-posites in combination with aluminium phosphinate. Polym Degrad Stab. 2009;94(8):1245–53.CrossRefGoogle Scholar
  39. 39.
    Brehme S, Koeppl T, Schartel B, Altstaedt V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butyleneterephthalate) and its glass-fibre composites. E-Polymers. 2014;14(3):193–208.CrossRefGoogle Scholar
  40. 40.
    Kaya H, Ozdemir E, Kaynak C, Hacaloglu J. Effects of nanoparticles on thermal degradation of polylactide/aluminium diethylphosphinate composites. J Anal Appl Pyrolysis. 2016;118:115–22.CrossRefGoogle Scholar
  41. 41.
    Zhan ZS, Li B, Xu MJ. Synergistic effects of silicone resin on an aluminium diethylphosphinate flame retardant polyamide 6,6 system. Sci Adv Mater. 2015;7(9):1830–7.CrossRefGoogle Scholar
  42. 42.
    Kaya H, Hacaloglu J. Thermal degradation of polylactide/aluminium diethyl-phosphinate. J Anal Appl Pyrolysis. 2014;110:155–62.CrossRefGoogle Scholar
  43. 43.
    Liu XQ, Liu JY, Cai SJ. Comparative study of aluminum diethylphosphinate and aluminum methylethylphosphinate-filled epoxy flame-retardant composites. Polym Compos. 2012;33(6):918–26.CrossRefGoogle Scholar
  44. 44.
    Wang YC, Zhang L, Yang YY, Cai XF. The investigation of flammability, thermal stability, heat resistance and mechanical properties of unsaturated polyester resin using AlPi as flame retardant. J Therm Anal Calorim. 2015;122(3):1331–9.CrossRefGoogle Scholar
  45. 45.
    Seefeldt H, Duemichen E, Braun U. Flame retardancy of glass fiber reinforced high temperature polyamide by use of aluminum diethylphosphinate thermal and thermo-oxidative effects. Polym Int. 2013;62(11):1608–16.Google Scholar
  46. 46.
    Sut A, Greiser S, Jager C, Schartel B. Interactions in multicomponent flame-retardant polymers: solid-state NMR identifying the chemistry behind it. Polym Degrad Stab. 2015;121:116–25.CrossRefGoogle Scholar
  47. 47.
    Liu ZG, Wang JL, Zhu JH, Jiao DR, Xie ZD and Zhong L. Methord for preparation of flame retardant diethyl phosphonate. CN 103319524A; 2013.Google Scholar
  48. 48.
    Feng DM, Zhou ZM, Bo MP. An investigation of the thermal degradation of melamine phosphonite by XPS and thermal analysis techniques. Polym Degrad Stab. 1995;50(1):65–70.CrossRefGoogle Scholar
  49. 49.
    Braun U, Balabanovich AI, Schartel B, Knoll U, Artner J, Ciesielski M, Doering M, Perez R, Sandler JKW, Altstädt V, Hoffmann T, Pospiech D. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer. 2006;47(26):8495–508.CrossRefGoogle Scholar
  50. 50.
    Mariappan T, You Z, Hao JW, Wilkie CA. Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur Polym J. 2013;49(10):3171–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of ScienceXihua UniversityChengduChina
  2. 2.Department of Materials Science and EngineeringBeijing Technology and Business UniversityBeijingChina

Personalised recommendations