Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1799–1822 | Cite as

Calorimetric investigations of hydrogen-bonded liquid crystal binary mixtures

  • G. Chandrasekar
  • N. Pongali Sathya Prabu
  • M. L. N. Madhu MohanEmail author
Article
  • 69 Downloads

Abstract

Double hydrogen-bonded liquid crystals formed between methyl malonic acid (MM) and p-n-alkyloxy benzoic acids (nBAO) are characterized. Variation in the molar proportion of MM + nBAO (n = 8, 11 and 12) exhibiting good phase polymorphism yields two different sets of binary mixtures labeled as X and Y (where X = MM + 8BAO and Y = MM + 11BAO, MM + 12BAO) which yields 18 hydrogen-bonded binary mixtures as a result. The molar proportions of X and Y are varied in steps of 0.1–0.9 to obtain 18 binary mixtures. Chemical, optical and thermal analysis are carried out for all the 18 binary mixtures formed. Hydrogen bond existence and the chemical environment of the precursor are confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy studies, respectively. Phase variance and the corresponding transition temperatures of the binary mixtures are studied by the observation of textures through polarizing optical microscope (POM), and the same is verified by recording the differential scanning calorimetry (DSC). Phase diagram of the two binary mixtures is built from the POM and DSC data. Thermal equilibrium, odd–even effect, thermal stability factor, order of phase transition, stability of phase through enthalpy values and specific heat value possessed by the mixtures are derived from the DSC datum obtained. These investigations are performed for the prepared binary mixtures with a curiosity to understand the optical and calorimetric properties exhibited by them.

Keywords

Double hydrogen-bonded liquid crystals Binary mixtures Thermal equilibrium Order of phase transition Specific heat 

Notes

Acknowledgements

The authors acknowledge the infrastructural support provided by the Bannari Amman Institute of Technology and financial support provided by SERB, New Delhi, India, Vide File No.: EMR/2017/001075.

References

  1. 1.
    Liu CK, Cheng KT, Fuh AYG. Designs of high color purity RGB color filter for liquid crystal displays applications using Fabry-Perot etalons. J Disp Technol. 2016;12:1492–3.CrossRefGoogle Scholar
  2. 2.
    Geelhaar T. Liquid crystals for display applications. Liq Cryst. 1998;24:91–8.CrossRefGoogle Scholar
  3. 3.
    Furue Hirokazu, Ebato Yuki, Ninomiya Akihiro, Sasaki Hitoshi. Study on alignment technique of ferroelectric liquid crystals for display application. Mol Cryst Liq Cryst. 2017;646:99–106.CrossRefGoogle Scholar
  4. 4.
    Pal K, Madhu Mohan MLN, Foley M, Ahmed W. Emerging assembly of ZnO nanowires/graphene dispersed liquid crystal for switchable device modulation. Org Electron. 2018.  https://doi.org/10.1016/j.orgel.2017.12.044.CrossRefGoogle Scholar
  5. 5.
    Pal K, Abd Elkodous M, Madhu Mohan MLN. CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J Mater Sci Mater Electron. 2018.  https://doi.org/10.1007/s10854-018-9083-3.CrossRefGoogle Scholar
  6. 6.
    Sankarranarayanan K, Kavitha C, Madhu Mohan MLN. Chemical and optical characterization of linear hydrogen bonded thermotropic liquid crystal dimmers. Optik. 2017;143:42–58.CrossRefGoogle Scholar
  7. 7.
    Peng F, Chen Y, Wu S-T, Tripathi S, Twieg RJ. Low loss liquid crystals for infrared applications. Liq Cryst. 2014;41:1545–52.CrossRefGoogle Scholar
  8. 8.
    Miller DS, Carlton RJ, Mushenheim PC, Abbott NL. Introduction to optical methods for characterizing liquid crystals at interfaces. Langmuir. 2013;29:3154–69.CrossRefGoogle Scholar
  9. 9.
    Abdulhalim I. Non-display bio-optic applications of liquid crystals. Liq Cryst Today. 2011;20:44–60.CrossRefGoogle Scholar
  10. 10.
    Tripathi Chandra Shekhar Pati, Leys Jan, Losada-Pérez Patricia, Lava Kathleen, Binnemans Koen, Glorieux Christ, Thoen Jan. Adiabatic scanning calorimetry study of ionic liquid crystals with highly ordered crystal smectic phases. Liq Cryst. 2013;40:329–38.CrossRefGoogle Scholar
  11. 11.
    Mani SA, Hadkar SU, Jessy PJ, Lal S, Keller P, Khosla S, Sood N, Sarawade P. Study of the optical, thermal, and mechanical properties of nematic liquid crystal elastomers. J Inf Disp. 2016;17:169–76.CrossRefGoogle Scholar
  12. 12.
    Akaogi J, Koizumi Y, Ono M, Furue H. Application of ferroelectric liquid crystals to optical devices. Mol Cryst Liq Cryst. 2014;596:106–12.CrossRefGoogle Scholar
  13. 13.
    Suchaneck G, Gerlach G. Adapting BaTiO3-based relaxor ferroelectrics for electrocaloric application. Ferroelectrics. 2017;515:1–7.CrossRefGoogle Scholar
  14. 14.
    Gopunath AJ, Chitravel T, Kavitha C, Prabu NPS, Madhu Mohan MLN. Thermal, optical, and dielectric analysis of hydrogen-bonded liquid crystals formed by adipic and alkyloxy benzoic acids. Mol Cryst Liq Cryst. 2014;592:63–81.CrossRefGoogle Scholar
  15. 15.
    Shiyanovskii SV, Lavrentovich OD. Dielectric relaxation and memory effects in nematic liquid crystals. Liq Cryst. 2010;37:737–45.CrossRefGoogle Scholar
  16. 16.
    Jakli A. Electro-mechanical effects in liquid crystals. Liq Cryst. 2010;37:825–37.CrossRefGoogle Scholar
  17. 17.
    Melker AI, Efleev AN. Computer simulation of structure and mechanical properties of polymer liquid crystals. J Macromol Sci. 1999;38:769–85.CrossRefGoogle Scholar
  18. 18.
    Goodby JW. Synthesis, properties and applications of ferroelectric smectic liquid crystals. Ferroelectrics. 1983;49:275–84.CrossRefGoogle Scholar
  19. 19.
    Pal K, Yang X, Madhu Mohan MLN, Schirhagl R, Wang G. Switchable, self-assembled CdS nanomaterials embedded in liquid crystal cell for high performance static memory device. Mater Lett. 2016.  https://doi.org/10.1016/j.matlet.2016.01.064.CrossRefGoogle Scholar
  20. 20.
    Pal K, Sabu T, Madhu Mohan MLN. Evaluation of versatile CdS nanomaterials based liquid crystals switchable device. J Nanosci Nanotechnol. 2017;17:2401–12.CrossRefGoogle Scholar
  21. 21.
    Gray GW. Molecular structure and liquid crystal properties. New York: Academic press; 1962.Google Scholar
  22. 22.
    Chandrasekhar S. Liquid crystals. New York: Cambridge University Press; 1977.Google Scholar
  23. 23.
    Jin YW, Im SJ, Sung JH, Noh CH, Sakong DS. Thermo-mechanical and electro-optical properties of polymer dispersed liquid crystal films. Liq Cryst. 1995;19:755–8.CrossRefGoogle Scholar
  24. 24.
    Yang Teng-Zhou, Iino Hiroaki, Hanna Jun-ichi. Novel smectic liquid crystals based on benzo[c]cinnoline: their synthesis, mesomorphism, opto- and electro-chemical properties. Liq Cryst. 2017;44:666–73.CrossRefGoogle Scholar
  25. 25.
    Liao Chien-Tung, Zheng-Long Wu, Nien-Chiwh Wu, Liu Jung-Yo, Jiang Ming-Hui, Zou Sing-Fang, Lee Jiunn-Yih. Phase behavior and electro-optical studies in mixtures of chiral and non-chiral tilted smectic C-type liquid crystals. Ferroelectrics. 2011;413:84–95.CrossRefGoogle Scholar
  26. 26.
    Muniprasad M, Srinivasulu M, Chalapathi PV, Potukuchi DM. Induction of liquid crystalline phases and influence of chain length of fatty acids in linear hydrogen-bonded liquid crystal complexes. Mol Cryst Liq Cryst. 2012;557:102–17.CrossRefGoogle Scholar
  27. 27.
    Yang Wenjie, Lan Tian, Xia Senlin, Ma Lipeng, Wang Yinghan. Influence of macroinitiator’s glass transition temperature on the response times of polymer dispersed liquid crystals. Liq Cryst. 2014;41:202–6.CrossRefGoogle Scholar
  28. 28.
    Nawa Nobuhiko. Relaxation near smectic-nematic transition temperature in smectic A liquid crystals. Mol Cryst Liq Cryst. 1991;196:39–46.CrossRefGoogle Scholar
  29. 29.
    Govindaian TN, Sreepad HR, Nagappa X. Optical and thermal characterization of binary mixtures of liquid crystals. Mol Cryst Liq Cryst. 2013;574:9–18.CrossRefGoogle Scholar
  30. 30.
    Rajanandkumar R, Pongali Sathya Prabu N, Madhu Mohan MLN. Characterization of hydrogen bonded liquid crystals formed by suberic acid and alkyl benzoic acids. Mol Cryst Liq Cryst. 2013;587:60–79.CrossRefGoogle Scholar
  31. 31.
    Pal K, Madhu Mohan MLN, Sabu T. Dynamic application of novel electro-optic switchable device modulation by graphene oxide dispersed liquid crystal cell assembling CdS nanowires. Org Electron. 2016;39:25–37.CrossRefGoogle Scholar
  32. 32.
    Pal K, Madhu Mohan MLN, Regius F, Luo B, Wang G. Investigations of CdS nanostructures encapsulated in soft self-assembled thermotropic liquid crystals matrix. Sci Adv Mater. 2016;8:1–14.CrossRefGoogle Scholar
  33. 33.
    Ahmed HA. Thermal behavior of binary mixtures of isomers of different molecular structures and different lateral substituent positions. J Therm Anal Calorim. 2016;125:823–30.CrossRefGoogle Scholar
  34. 34.
    Bhagavath P, Mahabaleshwara S. Mesomorphism in binary mixtures of 4-((hexylimino) methyl)benzoic acid and 4-alkyloxybenzoic acids. J Therm Anal Calorim. 2017;129:339–45.CrossRefGoogle Scholar
  35. 35.
    Fitas Jakub, Jaworska-Gołąb Teresa, Deptuch Aleksandra, Tykarska Marzena, Kurp Katarzyna, Żurowska Magdalena, Marzec Monika. Physical properties of new binary antiferroelectric liquid crystal mixtures. Phase Transit. 2018;91:199–209.CrossRefGoogle Scholar
  36. 36.
    Kurt M, Avci S. Analysis of the tilt angle for a binary mixture of C7-70PDOB liquid crystal close to the smectic A–smectic C* transition. Ferroelectrics. 2014;471:118–27.CrossRefGoogle Scholar
  37. 37.
    Govindaiah TN, Sreepad HR, Nagappa. Study on optical characterization of binary mixture of two thermotropic liquid crystals. Mol Cryst Liq Cryst. 2015;609:93–9.CrossRefGoogle Scholar
  38. 38.
    Matranga MA, De Santo MP, Petriashvili G, Chanishvili A, Chilaya G, Barberi R. Frequency tunable lasing in a three layer cholesteric liquid crystal cell. Ferroelectrics. 2010;395:1–11.CrossRefGoogle Scholar
  39. 39.
    Park NH, Noh SC, Nayek P, Lee M-H, Kim MS, Chien L-C, Lee JH, Kim BK, Lee SH. Optically isotropic liquid crystal mixtures and their application to high-performance liquid crystal devices. Liq Cryst. 2015;42:530–6.CrossRefGoogle Scholar
  40. 40.
    Govindaiah TN, Sreepad HR, Nagappa. Induced polymorphism of smectic phases in binary mixture of liquid crystals. Mol Cryst Liq Cryst. 2015;616:7–12.CrossRefGoogle Scholar
  41. 41.
    Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. Study and characterization of the smectic X* phase in binary mixtures of thermotropic double hydrogen bonded ferroelectric liquid crystals. Phase Transit. 2015;88:907–28.CrossRefGoogle Scholar
  42. 42.
    Rajanandkumar R, Pongali Sathya Prabu N, Madhu Mohan MLN. Investigations on hydrogen bonded liquid crystals formed by p-n alkyl benzoic acids and dodecane dicarboxlic acids. Mol Cryst Liq Cryst. 2016;626:193–206.CrossRefGoogle Scholar
  43. 43.
    Rohini P, Pongali Sathya Prabu N, MadhuMohan MLN. Comparison of mesomorphic properties exhibited bilinear hydrogen bonded thermotropic liquid crystals. Mol Cryst Liq Cryst. 2016;631:74–91.CrossRefGoogle Scholar
  44. 44.
    Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. Binary mixtures of hydrogen-bonded ferroelectric liquid crystals: thermal span enhancement in smectic X* phase. Z Naturforsch. 2016;70:757–74.Google Scholar
  45. 45.
    Kavitha C, Madhu Mohan MLN. Design, synthesis and characterization of a linear hydrogen bonded homologous series exhibiting reentrant smectic C ordering. J Phys Chem Solids. 2012;73:1203–12.CrossRefGoogle Scholar
  46. 46.
    Chandrasekar G, Pongali Sathya Prabu N, Madhu Mohan MLN. Design, synthesis and characterization of hydrogen bonded liquid crystals formed between methyl malonic acid and pn-alkyloxy/alkyl benzoic acids. Mol Cryst Liq Cryst. 2017;652:23–40.CrossRefGoogle Scholar
  47. 47.
    Chandrasekar G, Pongali Sathya Prabu N, Madhu Mohan MLN. Optical and thermal characterization of double hydrogen bonded liquid crystals: binary mixtures. Ferroelectrics. 2018;524:102–37.CrossRefGoogle Scholar
  48. 48.
    Pongali Sathya Prabu N, Madhu Mohan MLN. Characterization of a new smectic ordering in supramolecular hydrogen bonded liquid crystals by X-ray, optical and dielectric studies. J Mol Liq. 2013;182:79–90.CrossRefGoogle Scholar
  49. 49.
    Gray GW, Goodby JW. Smectic liquid crystals. Glasgow: Leonard Hill; 1984.Google Scholar
  50. 50.
    Pavia DL, Lampman GM, George Kriz S. Introduction to spectroscopy. 3rd ed. Haryana: Brooks/Cole; 2007.Google Scholar
  51. 51.
    Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. Hoboken: Wiley; 2005.Google Scholar
  52. 52.
    Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. A detailed study of hydrogen bonded ferroelectric mesogens formed between alkyl and alkyloxy benzoic acids with carbamyl glutamic acid. Liq Cryst. 2018;45:431–49.CrossRefGoogle Scholar
  53. 53.
    Pongali Sathya Prabu N, Vijayakumar VN, Madhu Mohan MLN. Characterization of a hydrogen bonded liquid crystal homologous series: detailed FTIR studies in various mesophases. J Mol Struct. 2011;994:387–91.CrossRefGoogle Scholar
  54. 54.
    Sankarranarayanan K, Kavitha C, Madhu Mohan MLN. Design, synthesis and characterization of hydrogen bonded thermotropic liquid crystals. Mol Cryst Liq Cryst. 2017;648:35–52.CrossRefGoogle Scholar
  55. 55.
    Kavitha C, Pongali Sathya Prabu N, Madhu Mohan MLN. Design, synthesis and characterization of a linear hydrogen bonded homologous series. Physica B. 2012;407:859–67.CrossRefGoogle Scholar
  56. 56.
    Pongali Sathya Prabu N, Madhu Mohan MLN. Systematic studies on eight homologous series of supramolecular hydrogen bonded liquid crystals. Phase Transit. 2013;86:339–60.CrossRefGoogle Scholar
  57. 57.
    Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. Linear double hydrogen-bonded thermotropic liquid crystals formed between oxaloacetic acid and p-n-alkyloxy benzoic acids. Mol Cryst Liq Cryst. 2016;626:169–82.CrossRefGoogle Scholar
  58. 58.
    Marcelja S. Chain ordering in liquid crystals. I. Even–odd effect. J Chem Phys. 1974;60:3599–604.CrossRefGoogle Scholar
  59. 59.
    Myrvold Bernt O. Odd–even effects in the alignment of ferroelectric liquid crystals. Liq Cryst. 1989;5:1139–47.CrossRefGoogle Scholar
  60. 60.
    Itoh T, Takano M, Yanagisawa T, Hashimoto M. Ferroelectricity in odd- and even-numbered nylons. Ferroelectrics. 1998;216:35–51.CrossRefGoogle Scholar
  61. 61.
    Smith GW, Gardlund ZG. Liquid crystalline phases in a doubly homologous series of benzylideneanilines textures and scanning Calorimetry. J Chem Phys. 1973;6:3214–6.CrossRefGoogle Scholar
  62. 62.
    Osman Z. Synthesis of low melting liquid crystalline N-(4-n-alkylbenzilidene)-40-n-aIkylanilines. Z Naturforsch. 1976;31:801–4.CrossRefGoogle Scholar
  63. 63.
    Navard P, Cox R. Study of the smectic a nematic transition in octyl and nonyl cyanobiphenyls. Mol Cryst Liq Cryst. 1984;102:261–4.CrossRefGoogle Scholar
  64. 64.
    Pongali Sathya Prabu N, Madhu Mohan MLN. Spontaneous polarization analysis in hydrogen bonded ferroelectric liquid crystals. Phase Transit. 2014;87:491–508.CrossRefGoogle Scholar
  65. 65.
    Garland CW, Kasting GB, Lushington KJ. Calorimetric study of phase transitions in the liquid crystal butyloxybenzylidene octylaniline (4O.8). J Phys Lett. 1980;41:L419–22.CrossRefGoogle Scholar
  66. 66.
    Sangameswari G, Pongali Sathya Prabu N, Madhu Mohan MLN. Thermal analysis of hydrogen-bonded ferroelectric liquid crystals. J Therm Anal Calorim. 2017;128:369–86.CrossRefGoogle Scholar
  67. 67.
    Wu YK, Lin KL, Salam B. Specific heat capacities of Sn–Zn-based solders and Sn–Ag–Cu solders measured using differential scanning calorimetry. J Electron Mater. 2009;38:227–30.CrossRefGoogle Scholar
  68. 68.
    Pongali Sathya Prabu N, Madhu Mohan MLN. Thermal analysis of hydrogen bonded benzoic acid liquid crystals. J Therm Anal Calorim. 2013;113:811–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Liquid Crystal Research Laboratory (LCRL)Bannari Amman Institute of TechnologySathyamangalamIndia

Personalised recommendations