Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1851–1861 | Cite as

Synthesis, thermal, spectral, antimicrobial and cytotoxicity profile of the Schiff bases bearing pyrazolone moiety and their Cu(II) complexes

  • Irina Zarafu
  • Rodica Olar
  • Mariana Carmen Chifiriuc
  • Coralia Bleotu
  • Petre Ioniţă
  • Mihaela Mulţescu
  • Gabriela Ioniţă
  • Graţiela Grădişteanu
  • Arnaud Tatibouët
  • Mihaela BadeaEmail author
Article
  • 75 Downloads

Abstract

A series of Schiff bases resulted in the [1 + 1] condensation of 8-alkyl-2-hydroxy-tricyclo[7.3.1.02.7]-tridecan-13-one with the 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one, and their complexes CuL(CH3COO)2·nH2O were synthesized. The compounds were characterized by microanalytical, ESI–MS, NMR, IR, electronic and EPR spectra. Based on the ESI–MS and IR spectra, a mononuclear structure with both Schiff base and acetate as chelate was proposed for complexes. An elongated rhombic stereochemistry was assigned considering electronic and EPR data. The thermal analyses have evidenced processes as water elimination, acetate decomposition as well as oxidative degradation of the Schiff base moiety. The bioevaluation of compounds in relation to planktonic and biofilm-embedded microbial cells, as well as to human cells, indicates an improved activity of complexes over ligands. The same tendency was observed for antioxidant activity.

Keywords

4-Aminoantipyrine Copper complex Biofilm Cytotoxicity Schiff base Thermal behaviour 

Notes

Acknowledgements

The authors thank to researcher Drăghici Constantin from Romanian Academy C. D. Neniţescu Organic Chemistry Institute for the help in NMR data interpretation.

Supplementary material

10973_2018_7681_MOESM1_ESM.pdf (914 kb)
Supplementary material 1 (PDF 913 kb)

References

  1. 1.
    Casas JS, García-Tasende MS, Sánchez A, Sordo J, Touceda A. Coordination modes of 5-pyrazolones: a solid-state overview. Coord Chem Rev. 2007;251:1561–89.CrossRefGoogle Scholar
  2. 2.
    Apotrosoaei M, Vasincu IM, Dragan M, Buron F, Routier S, Profire L. Design, synthesis and the biological evaluation of new 1,3-thiazolidine-4-ones based on the 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one scaffold. Molecules. 2014;19:13824–47.CrossRefGoogle Scholar
  3. 3.
    Mahle F, Guimaraes T, Meira AV, Correa R, Cruz R, Cruz AB, Nunes RJ, Cechinel-Filho V, Campos F. Synthesis and biological evaluation of N-antipyrine-4-substituted amino-3-chloromaleimide derivatives. Eur J Med Chem. 2010;45:4761–8.CrossRefGoogle Scholar
  4. 4.
    Nasr T, Bondock S, Youns M, Fayad W, Zaghary W. Synthesis, antitumor evaluation and microarray study of some new pyrazolo[3,4-d][1,2,3]triazine derivatives. Eur J Med Chem. 2017;141:603–14.CrossRefGoogle Scholar
  5. 5.
    Premnath D, Enoch IVMV, Selvakumar PM, Indiraleka M, Vennila JJ. Design, synthesis, spectral analysis, in vitro anticancer evaluation and molecular docking studies of some fluorescent 4-amino-2, 3-dimethyl-1-phenyl-3-pyrazolin-5-one, ampyrone derivatives. Interdiscip Sci Comput Life Sci. 2017;9:130–9.CrossRefGoogle Scholar
  6. 6.
    Palkar MB, Patil A, Hampannavar GA, Shaikh MS, Patel HM, Kanhed AM, Yadav MR, Karpoormath RV. Design, synthesis and QSAR studies of 2-amino benzo[d]thiazolyl substituted pyrazol-5-ones: novel class of promising antibacterial agents. Med Chem Res. 2017;26:1969–87.CrossRefGoogle Scholar
  7. 7.
    Sayed GH, Azab ME, Anwer KE, Raouf MA, Negm NA. Pyrazole, pyrazolone and enaminonitrile pyrazole derivatives: Synthesis, characterization and potential in corrosion inhibition and antimicrobial applications. J Mol Liq. 2018;252:329–38.CrossRefGoogle Scholar
  8. 8.
    Santos PM, Antunes AMM, Noronha J, Farnands E, Vieira AJSC. Scavenging activity of aminoantipyrines against hydroxyl radical. Eur J Med Chem. 2010;45:2258–64.CrossRefGoogle Scholar
  9. 9.
    Elattar KM, Fadda AA. Chemistry of antipyrine. Synth Commun. 2016;46:1567–94.CrossRefGoogle Scholar
  10. 10.
    Ragab HM, Bekhit AA, Rostom SA, Bekhit AE. Compounds containing azole scaffolds as cyclooxygenase inhibitors: a review. Curr Top Med Chem. 2016;16:3569–81.CrossRefGoogle Scholar
  11. 11.
    Mariappan G, Saha BP, Bhuyan NR, Bharti PR, Kumar D. Evaluation of antioxidant potential of pyrazolone derivatives. J Adv Pharm Technol Res. 2010;1:260–7.CrossRefGoogle Scholar
  12. 12.
    Abdelgawad MA, Labib MB, Ali WAM, Kamel G, Azouz AA, EL-Nahass EL-S. Design, synthesis, analgesic, anti-inflammatory activity of novel pyrazolones possessing aminosulfonyl pharmacophore as inhibitors of COX-2/5-LOX enzymes: histopathological and docking studies. Bioorg Chem. 2018;78:103–14.CrossRefGoogle Scholar
  13. 13.
    Rosu T, Pasculescu S, Lazar V, Chifiriuc C, Cernat R. Copper(II) complexes with ligands derived from 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: synthesis and biological activity. Molecules. 2006;11:904–14.CrossRefGoogle Scholar
  14. 14.
    Rosu T, Pahontu E, Maxim C, Georgescu R, Stanica N, Almajan GL, Gulea A. Synthesis, characterization and antibacterial activity of some new complexes of Cu(II), Ni(II), VO(II), Mn(II) with Schiff base derived from 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one. Polyhedron. 2010;29:757–66.CrossRefGoogle Scholar
  15. 15.
    Rosu T, Pahontu E, Mezey R-S, Ilies D-C, Georgescu R, Shova S, Gulea A. Synthesis, structural and spectral studies of Cu(II) and V(IV) complexes of a novel Schiff base derived from pyridoxal. Antimicrobial activity. Polyhedron. 2012;31:352–60.CrossRefGoogle Scholar
  16. 16.
    Pandiyan RP, Raman N. DNA binding propensity and nuclease efficacy of biosensitive Schiff base complexes containing pyrazolone moiety: synthesis and characterization. J Mol Struct. 2016;1125:374–82.CrossRefGoogle Scholar
  17. 17.
    Pandiyan RP, Raman N. Biological screening and DNA nuclease activity of transition metal complexes of N2O2 type of Knoevenagel condensate Schiff base. Appl Organomet Chem. 2016;30:531–9.CrossRefGoogle Scholar
  18. 18.
    Matei L, Bleotu C, Baciu I, Diaconu CC, Hanganu A, Banu O, Ionita P, Paun A, Tatibouët A, Zarafu I. Synthesis and biological activities of some new isonicotinic acid 2-(2-hydroxy-8-substituted-tricyclo[7.3.1.02.7]tridec-13-ylidene)-hydrazides. Bioorg Med Chem. 2015;23:401–10.CrossRefGoogle Scholar
  19. 19.
    Zarafu I, Badea M, Ioniţă G, Ioniţă P, Păun A, Bucur M, Chifiriuc MC, Bleotu C, Olar R. Spectral, magnetic, thermal and biological studies on Ca(II) and Cu(II) complexes with a novel crowned Schiff base. J Therm Anal Calorim. 2017;127:1511–21.CrossRefGoogle Scholar
  20. 20.
    Hathaway BJ. Copper. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. New York: Pergamon Press; 1987.Google Scholar
  21. 21.
    Gonzalez-Vichez F, Vilaplana R. Chemotherapeutic copper compounds. In: Gielen M, Tiekink RT, editors. Metallotherapeutic drugs & metal-based diagnostic agents The use of metals in medicine. Chichester: Wiley; 2005.Google Scholar
  22. 22.
    Limban C, Missir AV, Nuţă DC, Căproiu MT, Papacocea MT, Chiriţă C. Synthesis of some new 2-((4-chlorophenoxy)methyl)-N-(arylcarbamothioyl) benzamides as potential antifungal agents. Farmacia. 2016;64:775–9.Google Scholar
  23. 23.
    Măruţescu L, Calu L, Chifiriuc MC, Bleotu C, Daniliuc C-G, Fălcescu D, Kamerzan CM, Badea M, Olar R. Synthesis, physico-chemical characterization, crystal structure and influence on microbial and tumor cells of some Co(II) Complexes with 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine. Molecules. 2017;22:1233.CrossRefGoogle Scholar
  24. 24.
    Limban C, Missir AV, Grumezescu AM, Oprea AE, Grumezescu V, Vasile BS, Socol G, Truşcă R, Caproiu MT, Chifiriuc MC, Gălăţeanu B, Costache M, Moruşciag L, Pîrcălăbioru G, Nuţă DC. Bioevaluation of novel anti-biofilm coatings based on PVP/Fe3O4 nanostructures and 2-((4-ethylphenoxy) methyl)-N-(arylcarbamothioyl)benzamides. Molecules. 2014;8:12011–30.CrossRefGoogle Scholar
  25. 25.
    Chifiriuc MC, Grumezescu AM, Andronescu E, Ficai A, Cotar AI, Grumezescu V, Bezirtzoglou E, Lazar V, Radulescu R. Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded enterococcus faecalis cells. Anaerobe. 2013;22:14–9.CrossRefGoogle Scholar
  26. 26.
    Mihaiescu DE, Cristescu R, Dorcioman G, Popescu CE, Nita C, Socol G, Mihailescu IN, Grumezescu AM, Tamas D, Enculescu M, Negrea RF, Ghica C, Chifiriuc C, Bleotu C, Chrisey DB. Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties. Biofabrication. 2013;5:015007.CrossRefGoogle Scholar
  27. 27.
    Do T, Devine D, Marsh PD. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clin Cosmet Investig Dent. 2013;5:11–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Panus E, Balotescu Chifiriuc M-C, M Bucur, R Cernat, Mitache M, Nedelcu D, Bleotu C, Valeanu D, Lazar V, Rosoiu N. Virulence, pathogenicity, antibiotic resistance and plasmid profile of Escherichia coli strains isolated from drinking and recreational waters. Rom Biotechol Lett. 2008;13.Google Scholar
  29. 29.
    Belkheiri N, Bouguerne B, Bedos-Belval F, Duran H, Bernis C, Salvayre R, Negre-Salvayre A, Baltas M. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur J Med Chem. 2010;45:3019–26.CrossRefGoogle Scholar
  30. 30.
    Remes C, Paun A, Zarafu I, Tudose M, Caproiu MT, Ionita G, Bleotu C, Matei L, Ionita P. Chemical and biological evaluation of some new antipyrine derivatives with particular properties. Bioorg Chem. 2012;6:41–52.Google Scholar
  31. 31.
    Paun A, Zarafu I, Caproiu MT, Draghici C, Maganu M, Cotar AI, Chifiriuc MC, Ionita P. Synthesis and microbiological evaluation of several benzocaine derivatives. C R Chim. 2013;6:665–71.CrossRefGoogle Scholar
  32. 32.
    Barbulescu N. Condensarea ciclohexanonaldehidei. Rev Chem (Bucharest). 1956;7:45–52.Google Scholar
  33. 33.
    Coic J-P, Rollin P, Setton R. Condensation de la cyclohexanone par les alcoolates alcalins en solution. C R Acad Sci Paris. 1969;t268:1964–6.Google Scholar
  34. 34.
    Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.CrossRefGoogle Scholar
  35. 35.
    Deacon GB, Philips JR. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.CrossRefGoogle Scholar
  36. 36.
    Zeleńák V, Vargová Z, Györyová K, Večerníková E, Balek V. Cooper(II) acetates with aliphatic/heterocycles amines coupled TG-DTA-EGA study, IR characterization and structure correlation. J Therm Anal Calorim. 2005;82:747–54.CrossRefGoogle Scholar
  37. 37.
    Dojer B, Golobič A, Jagličić Z, Krist M, Drofenik M. Two new nickel(II) carboxylates with 3- and 4-aminopyridine: syntheses, structures, and magnetic properties. Monatsh Chem. 2012;143:73–8.CrossRefGoogle Scholar
  38. 38.
    Karmakar T, Kuang Y, Neamati N, Baruah JB. Cadmium complexes and cocrystals of indium complexes of benzothiazole derivatives and anticancer activities of the cadmium complexes. Polyhedron. 2013;54:285–93.CrossRefGoogle Scholar
  39. 39.
    Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley; 1986. Lever ABP. Inorganic Electronic Spectroscopy. Amsterdam, London, New York: Elsevier; 1986.Google Scholar
  40. 40.
    Solomon EI, Lever ABP, Inorganic Electronic Structure and Spectroscopy, Vol. II, Applications and Case Studies, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons; 2006.Google Scholar
  41. 41.
    Olar R, Vlaicu ID, Chifiriuc MC, Bleotu C, Stănică N, Vasile Scăeţeanu G, Silvestro L, Dulea C, Badea M. Synthesis, thermal analysis and biological characterisation of some new nickel (II) complexes with unsaturated carboxylates and heterocyclic N-donor ligands. J Therm Anal Calorim. 2017;127:731–41.CrossRefGoogle Scholar
  42. 42.
    Olar R, Calu L, Badea M, Chifiriuc MC, Bleotu C, Velescu B, Stoica O, Ioniţă G, Stanică N, Silvestro L, Dulea C, Uivarosi V. Thermal behaviour of some biologically active species based on complexes with a triazolopyrimidine pharmacophore. J Therm Anal Calorim. 2017;127:685–96.CrossRefGoogle Scholar
  43. 43.
    Bartyzel A. Synthesis, thermal study and some properties of N2O4-donor Schiff base and its Mn(III), Co(II), Ni(II), Cu(II) and Zn(II) Complexes. J Therm Anal Calorim. 2017;127:2133–47.CrossRefGoogle Scholar
  44. 44.
    Abdel-Monem YK, Abouel-Enein SA. Structural, spectral, magnetic and thermal studies of 5-(thiophene-2-ylmethine azo) uracil metal complexes: a comparative DFT study. J Therm Anal Calorim. 2017;130:2257–75.CrossRefGoogle Scholar
  45. 45.
    Clinical Laboratory and Standards Institute (CLSI). M100. Performance standards for antimicrobial susceptibility testing. 28th Edition. January 2018. Downloaded on 2/9/2018.Google Scholar
  46. 46.
    Clinical Laboratory and Standards Institute (CLSI). M60. Performance standards for antifungal susceptibility testing of fungal strains. 1st Edition. November 2017. Downloaded on 3/29/2018.Google Scholar
  47. 47.
    Lazăr V, Chifiriuc MC. Architecture and physiology of microbial biofilms. Roum Archiv Microbiol Immunol. 2010;69:95–107.Google Scholar
  48. 48.
    Lazar V. Quorum sensing in biofilms-how to destroy the bacterial citadels or their cohesion/power? Anaerobe. 2011;17:280–5.CrossRefGoogle Scholar
  49. 49.
    Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009;113:1226–33.CrossRefGoogle Scholar
  50. 50.
    Abdel-Monem YK, Abou El-Enein SA, El-Sheikh-Amer MM. Design of new metal complexes of 2-(3-amino-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-1-yl)aceto-hydrazide: Synthesis, characterization, modelling and antioxidant activity. J Mol Struct. 2017;1127:386–96.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Irina Zarafu
    • 1
  • Rodica Olar
    • 2
  • Mariana Carmen Chifiriuc
    • 3
    • 4
  • Coralia Bleotu
    • 5
  • Petre Ioniţă
    • 1
  • Mihaela Mulţescu
    • 1
  • Gabriela Ioniţă
    • 6
  • Graţiela Grădişteanu
    • 3
  • Arnaud Tatibouët
    • 7
  • Mihaela Badea
    • 2
    Email author
  1. 1.Department of Organic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  3. 3.Department of Microbiology, Faculty of BiologyUniversity of BucharestBucharestRomania
  4. 4.The Research Institute of the University of BucharestICUBBucharestRomania
  5. 5.Stefan S Nicolau Institute of VirologyBucharestRomania
  6. 6.Romanian Academy, “Ilie Murgulescu” Physical Chemistry InstituteBucharestRomania
  7. 7.ICOA-UMR7311, CNRSUniversity of OrleansOrléansFrance

Personalised recommendations