Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Study of microstructure and thermal properties of the low-melting Bi–In eutectic alloys


This study reports the results of microstructure and thermal analysis of low-melting Bi–In alloys with potential for commercial application in the field of phase change materials. Three eutectic alloys Bi–47.44In, Bi–66.33In, Bi–77.92In (all in at.%) were prepared and investigated by means of scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS) and differential scanning calorimetry (DSC). Microstructure of the prepared eutectic alloys was analysed using SEM–EDS, and identification of co-existing phases was done. Melting temperatures and latent heats of eutectic melting were measured using DSC technique. Experimentally obtained results were compared with the results of thermodynamic calculation according to CALPHAD (calculation of phase diagram) method, and good mutual agreement was noticed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Yang XH, Tan SC, Liu J. Numerical investigation of the phase change process of low melting point metal. Int J Heat Mass Transf. 2016;100:899–907.

  2. 2.

    Yang XH, Tan SC, Ding YJ, Wang L, Liu J, Zhou YX. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins. Int Commun Heat Mass Transfer. 2017;87:118–24.

  3. 3.

    Fleischer AS. Thermal energy storage using phase change materials: fundamentals and applications. New York: Springer; 2015.

  4. 4.

    Pandey AK, Hossain MS, Tyagi VV, Rahim NA, Jeyraj A, Selvaraj L, Sari A. Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew Sustain Energy Rev. 2018;82:281–323.

  5. 5.

    Mengjie S, Fuxin N, Ning M, Yanxin H, Shiming D. Review on building energy performance improvement using phase change materials. Energy Build. 2018;158:776–93.

  6. 6.

    Souayfane F, Fardoun F, Biwole PH. Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build. 2016;129:396–431.

  7. 7.

    Jin X, Shi D, Medina MA, Shi X, Zhou X, Zhang X. Optimal location of PCM layer in building walls under Nanjing (China) weather conditions. J Therm Anal Calorim. 2017;129(3):1767–78.

  8. 8.

    Ge H, Li H, Mei S, Liu J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energy Rev. 2013;21:331–46.

  9. 9.

    Tomizawa Y, Sasaki K, Kuroda A, Takeda R, Kaito Y. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices. Appl Therm Eng. 2016;98:320–9.

  10. 10.

    Tan FL, Tso CP. Cooling of mobile electronic devices using phase change materials. Appl Therm Eng. 2004;24:159–69.

  11. 11.

    Rodrıguez-Aseguinolaza J, Blanco-Rodrıguez P, Risueno E, Tello MJ, Doppiu S. Thermodynamic study of the eutectic Mg49–Zn51 alloy used for thermal energy storage. J Therm Anal Calorim. 2014;117:93–9.

  12. 12.

    Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45.

  13. 13.

    Kenisarin MM. High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev. 2010;14:955–70.

  14. 14.

    Kroupa A, Dinsdale AT, Watson A, Vrestal J, Zemanova A. COST531 project—study of the advanced materials for lead free soldering. J Min Metall Sect B Metall. 2007;43:113–23.

  15. 15.

    Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vízdal J, Zemanova A. The development of the COST 531 lead-free solders thermodynamic database. JOM. 2007;59(7):20–5.

  16. 16.

    Novakovic R, Ricci E, Giuranno D, Lanata T, Amore S. Thermodynamics and surface properties of liquid Bi–In alloys. Calphad. 2009;33(1):69–75.

  17. 17.

    Kulikova T, Mayorova A, Shubin A, Bykov V, Shunyaev K. Bismuth-indium system: thermodynamic properties of liquid alloys. Kovove Mater. 2015;53:133–7.

  18. 18.

    Saunders N, Miodownik AP. CALPHAD (a comprehensive guide). London: Elsevier; 1998.

  19. 19.

    Lukas HL, Fries SG, Sundman B. Computational thermodynamics: the Calphad method. Cambridge: Cambridge University Press; 2007.

  20. 20.

    Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA. PANDAT software with panengine, panoptimizer and panprecipitation for multi-component phase diagram calculation and materials property simulation. Calphad. 2009;33:328–42.

  21. 21.

    Dinsdale A, Watson A, Kroupa A, Vrestal J, Zemanova A, Vizdal J. COST action 531—Atlas of lead free soldering, COST Office, Brussels, 2008. ISBN: 978-80-86292-27-4.

  22. 22.

    Boettinger WJ, Kattner UR, Moon KW, Perepezko JH. DTA and heat-flux DSC measurements of alloy melting and freezing, NIST special publication 960-15, Washington, 2006.

  23. 23.

    Aigang P, Junbiao W, Xianjie Z. Prediction of melting temperature and latent heat for low-melting metal PCMs. Rare Metal Mater Eng. 2016;45(4):874–80.

Download references


This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, project No. OI172037.

Author information

Correspondence to Ivana Manasijević.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manasijević, I., Balanović, L., Holjevac Grgurić, T. et al. Study of microstructure and thermal properties of the low-melting Bi–In eutectic alloys. J Therm Anal Calorim 136, 643–649 (2019).

Download citation


  • Bi–In system
  • Eutectic alloy
  • Latent heat of melting
  • Microstructure