Advertisement

Experimental study of phase equilibria and thermodynamic properties of the Tl–Se–I system

  • Dunya Mahammad Babanly
  • Ziya Saxaveddin Aliev
  • Vusala Asim Majidzade
  • Dilgam Babir Tagiyev
  • Mahammad Baba Babanly
Article
  • 16 Downloads

Abstract

The phase equilibria in the ternary Tl–Se–I system have been investigated by means of differential thermal analysis, X-ray powder diffraction and the electromotive force measurements (EMF) of electrochemical cells relative to the thallium electrode with ionic liquid as an electrolyte. Several polythermal sections, the isothermal section at 300 K and the projection of the liquidus surface of the system have been constructed. The homogeneity and primary crystallization regions of intermediate phases, as well as types and coordinates of non- and monovariant equilibria have been determined. Formation of two congruently melting ternary compounds (Tl5Se2I at 720 K, and Tl6SeI4 at 705 K) was observed. It was revealed that the system is characterized by the existence of wide areas of α- (based on Tl2Se) and δ-solid solutions (based on Tl5Se2I). Standard thermodynamic functions of formation and standard entropies of Tl5Se2I and Tl6SeI4 compounds were calculated based on the thermodynamic study of Tl–Se–I alloys by the EMF measurements with an ionic liquid electrolyte.

Keywords

Thallium selenide–iodides Tl5Se2Tl6SeI4 Solid solutions Phase diagram Thermodynamic properties 

References

  1. 1.
    Wibowo AC, Malliakas CD, Lui Z, Peters JA, et al. Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg Chem. 2013;52(12):7045–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Nowak M, Nowrot A, Szperlich P, Jesionek M, et al. Fabrication and characterization of SbSI gel for humidity sensors. Sens Actuators A Phys. 2014;210:119–30.CrossRefGoogle Scholar
  3. 3.
    Yanpeng Q, Wujun S, Pavel GN, Kumar N. Topological quantum phase transition and superconductivity induced by pressure in the bismuth tellurohalide BiTeI. Adv Mater. 2017.  https://doi.org/10.1002/adma.201605965.CrossRefGoogle Scholar
  4. 4.
    Audzijonis A, Žaltauskas R, Sereika R, Lapeika V, Žigas L. Birefringence of SbSI and SbSeI crystals at the region of antiferroelectric phase transition. Phase Trans Multinatl J. 2017;90(3):312–6.CrossRefGoogle Scholar
  5. 5.
    Audzijonis A, Sereika R, Žigas L, Žaltauskas R. Dielectric and electrical properties of SbSI and SbSeI single crystals in the region of antiferroelectric phase transition. J Phys Chem Solids. 2015;83:117–20.CrossRefGoogle Scholar
  6. 6.
    Maaß H, Bentmann H, Seibel C, Tusche C, et al. Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat Commun. 2016;7:11621.  https://doi.org/10.1038/ncomms11621.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Landolt G, Eremeev SV, Koroteev YM, Slomski B, et al. Disentanglement of surface and bulk Rashba spin splitting in noncentrosymmetric BiTeI. Phys Rev Lett. 2012;109:116403–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Johnsen S, Liu ZF, Peters JA, Song JH, et al. Thallium chalcohalides for X-ray and γ-ray detection. J Am Chem Soc. 2011;133:10030–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Nguyen SL, Malliakas CD, Peters JA, Liu Z. Photoconductivity in Tl6SI4: a novel semiconductor for hard radiation detection. Chem Mater. 2013;25(14):2868–77.CrossRefGoogle Scholar
  10. 10.
    Acosta CM, Babilonia O, Abdalla LB, Fazzio A. Giant Rashba spin splitting with unconventional spin texture in a quantum spin hall insulator. Phys Rev B. 2016;94:041302–5.CrossRefGoogle Scholar
  11. 11.
    Hongliang S, Wenwen L, Kanatzidis MG, Szeles C, Du MH. Impurity-induced deep centers in Tl6SI4. J Appl Phys. 2017;121:145102–14.CrossRefGoogle Scholar
  12. 12.
    Kostina SS, Peters JA, Lin W, Chen P, et al. Photoluminescence fatigue and inhomogeneous line broadening in semi-insulating Tl6SeI4 single crystals. Semicond Sci Technol. 2016;31(6):1–27.CrossRefGoogle Scholar
  13. 13.
    Lin W, Kontsevoi OY, Liu Z, Das S, et al. Growth of Tl6SeI4 for γ-ray detection material by oxide impurity removal. Cryst Growth Des. 2017;17(11):6096–9.CrossRefGoogle Scholar
  14. 14.
    Das S, Peters JA, Lin W, Kostina SS, et al. Observation of persistent photoconductivity in Tl6SeI4 single crystals. J Phys Chem Lett. 2017;8(7):1538–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Aliev ZS, Babanly MB, Babanly DM, Shevelkov AV, Tedenac J-C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int J Mater Res. 2012;103(3):290–6.CrossRefGoogle Scholar
  16. 16.
    Aliev ZS, Musayeva SS, Jafarli FY, Amiraslanov IR, et al. The phase equilibria in the Bi–S–I ternary system and thermodynamic properties of the BiSI and Bi19S27I3 ternary compounds. J Alloy Compd. 2014;610:522–7.CrossRefGoogle Scholar
  17. 17.
    Babanly MB, Tedenac JC, Aliev ZS, Balitsky DM. Phase eqilibriums and thermodynamic properties of the system Bi–Te–I. J Alloys Compd. 2009;481:349–53.CrossRefGoogle Scholar
  18. 18.
    Aliev ZS, Musayeva SS, Imamaliyeva SZ, et al. Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6812-4.CrossRefGoogle Scholar
  19. 19.
    Babanly MB, Aliyev ZS, Musaeva SS, Babanly DM, Shevelkov AV. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J Alloys Compd. 2010;505(2):450–6.CrossRefGoogle Scholar
  20. 20.
    Kosyakov VI, Sinyakova EF. Study of crystallization of nonstoichiometric isocubanite Cu1.1Fe2.0S3.0 from melt in the system Cu–Fe–S. J Therm Anal Calorim. 2017;129:623.  https://doi.org/10.1007/s10973-017-6215-6.CrossRefGoogle Scholar
  21. 21.
    Achgar K, Kardellass S, Selhaoui N. Thermodynamic assessment of the Ytterbium–Germanium binary system. J Therm Anal Calorim. 2018;131:443.  https://doi.org/10.1007/s10973-017-6203-x.CrossRefGoogle Scholar
  22. 22.
    Blachnic R, Dreisbach HA, Engelen B. The system thallous iodide—thallous selenide and the structure of the TI6X4Y compounds. Z Naturforsch. 1983;38(3):139–42.CrossRefGoogle Scholar
  23. 23.
    Blachnic R, Dreisbach HA. Phase relations in the TlX-Tl2Se systems (X = Cl, Br, I) and the crystal structure of Tl5Se2I. J Solid State Chem. 1984;52:53–8.CrossRefGoogle Scholar
  24. 24.
    Peresh EYU, Lazarev VB, Kornejchuk OI, Semrad EE. Phase equilibria in Tl2S (Se, Te)-TlI and TlSe-TlCl(Br, I) systems. Inorg Mater. 1999;29(3):440–5.Google Scholar
  25. 25.
    Peresh EYU, Lazarev VB, Chigica VV, Kornejchuk OI. Homogeneity regions, preparation and properties of Tl6SI4, Tl5Se2Br(I) monocrystals. Russ J Inorg Chem. 1991;27(10):2079–85.Google Scholar
  26. 26.
    Babanly DM, Guseynov GM, Babanly MB, Sadigov FM. Phase diagram of the Tl-TlI-S system and thermodynamic properties of the compound Tl6SI4. Russ J Inorg Chem. 2012;57(1):90–9.CrossRefGoogle Scholar
  27. 27.
    Babanly DM, Amiraslanov IR, Shevelkov AV, Tagiyev DB. Phase equilibria in the Tl–TlI–Se system and thermodynamic properties of the ternary phases. J Alloys Compd. 2015;644:106–7.CrossRefGoogle Scholar
  28. 28.
    Babanly DM, Huseynov GM, Huseynova RG, Mustafayeva AL. Physico-chemical interaction of thallium iodides with sulfur. Kimya Problemleri—Chem Probl. 2015;2:154–5 (ISSN 2221-8688).Google Scholar
  29. 29.
    Babanly DM, Aliyev ASH. Physico-chemical aspects of obtaining new phases of variable composition on the basis of thallium tellurium-halides. Kimya Problemleri—Chem Probl. 2016;1:26–35 (ISSN 2221-8688).Google Scholar
  30. 30.
    Babanly DM, Aliev ZS, Imamaliyeva SZ, Zúñiga FJ, Madariaga G, Tagiyev DB. An investigation of the Tl–Te–I system and crystal structure of the Tl5Te2I. J Alloys Compd. 2016;688:997–9.CrossRefGoogle Scholar
  31. 31.
    Babanly DM, Babanly MB. Phase equilibria in the Tl-TlBr-Te system and thermodynamic properties of the compound Tl5Te2Br. Russ J Inorg Chem. 2010;55(3):1442–7.Google Scholar
  32. 32.
    Babanly DM, Aliev ZS, Dhafarli FY, Babanly MB. Phase equilibria in the Tl-TlCl-Te system and thermodynamic properties of the compound Tl5Te2Cl. Russ J Inorg Chem. 2011;56(10):442–49.CrossRefGoogle Scholar
  33. 33.
    Giancola C, Pagano B. Special chapter on recent developments in the field of calorimetry, thermal analysis, and applied thermodynamics. J Therm Anal Calorim. 2017;130:377.  https://doi.org/10.1007/s10973-017-6565-0.CrossRefGoogle Scholar
  34. 34.
    Korošec RC, Rotaru A. Thermal analysis and calorimetry in Central and Eastern Europe as a tool for solving diverse issues in different fields of science and applications. J Therm Anal Calorim. 2017;127:15.  https://doi.org/10.1007/s10973-016-5894-8.CrossRefGoogle Scholar
  35. 35.
    Wagner K. Thermodynamics of alloys. Moscow: M: Metallurgizdat; 1957.Google Scholar
  36. 36.
    Morachevskii AG, Voronin GF, Kutsenok IB. Electrochemical research methods in thermodynamics of metallic systems. Moscow: ITSK “Akademkniga”; 2003.Google Scholar
  37. 37.
    Massalski TB, editor. Binary alloy phase diagrams. 2nd ed. Materials park: ASM International; 1990.Google Scholar
  38. 38.
    Vasil’yev VP, Nikol’skaya AV, Gerasimov YI. Thermodynamic investigation of the alloys in the system thallium-selenium system by EMF method. Russ J Phys Chem. 1971;45(8):2061–3.Google Scholar
  39. 39.
    Iorish VS, Yungman VS, editors. Data Base of Thermal Constants of Substances; 2006. Digital version. http://chem.msu.ru/cgi-bin/tkv.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Catalysis and Inorganic Chemistry ANASBakuAzerbaijan
  2. 2.French Azerbaijani University (UFAZ)BakuAzerbaijan
  3. 3.Azerbaijani State Oil and Industrial UniversityBakuAzerbaijan
  4. 4.Materials Science and Nanotechnology DepartmentNear East UniversityNicosiaTurkey

Personalised recommendations