Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2305–2315 | Cite as

CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink

  • Ramin Mashayekhi
  • Erfan Khodabandeh
  • Omid Ali Akbari
  • Davood ToghraieEmail author
  • Mehdi Bahiraei
  • Milad Gholami
Article

Abstract

In this study, laminar and steady flow of hybrid Al2O3–Cu/water nanofluid is done for volume fraction of solid nanoparticles 0–2% in a double-layered microchannel with sinusoidal walls. The results of this study show that the sinusoidal shape of the microchannel walls has a strong effect on increasing heat transfer, and increasing solid nanoparticle volume fraction in base fluid can have a significant difference for increasing Nusselt number, so that the value of Nusselt number for solid nanoparticles volume fraction of 2% for Re = 50, 300, 700 and 1200 experiences 23%, 22% 19% and 13% increase compared with the base fluid. By increasing fluid viscosity, the shear stress especially in the areas close to wall and in fluid layers is increased and this factor can increase pressure drop in higher solid nanoparticles volume fractions. The static temperature profiles are affected by hot surfaces and their sinusoidal shapes in lower Reynolds numbers, and the curve for temperature of flow centerline for Re = 700 and 1200 is straight lines. Therefore, the usage of it for Reynolds numbers above 700 is not recommended.

Keywords

Thermal Nanofluid Sinusoidal Double-layered Microchannel heat sink 

List of symbols

Re

Reynolds number

T

Temperature (K)

Cp

Specific heat capacity (J kg−1 K−1)

k

Thermal conductivity (W m−1 K−1)

Nu

Nusselt number

q′′

Heat flux (W m−2)

h

Heat transfer coefficient (W m−2 K−1)

D

Hydraulic diameter (m)

A

Area (m−2)

P

Perimeter (m)

Greek symbols

μ

Dynamic viscosity (kg m−1 s−1)

ρ

Density (kg m−3)

ϕ

Volume fractions of nanoparticles (%)

Subscripts

ave

Average

eff

Effective

f

Fluid

max

Maximum

min

Minimum

nf

Nanofluid

s

Surface

in

Inlet

out

Outlet

References

  1. 1.
    Keshavarz Moraveji M, Barzegarian R, Bahiraei M, Barzegarian M, Aloueyan A, Wongwises S. Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7181-3.CrossRefGoogle Scholar
  2. 2.
    Khodabandeh E, Rahbari A, Rosen MA, Najafian Ashrafi Z, Akbari OA, Anvari AM. Experimental and numerical investigations on heat transfer of a water cooled lance for blowing oxidizing gas in an electrical arc furnace. Energ Convers Manag. 2017;148:43–56.CrossRefGoogle Scholar
  3. 3.
    Akbari OA, Goodarzi M, Safaei MR, Zarringhalam M, Ahmadi Sheikh Shabaniand GR, Dahari M. A modified two-phase mixture model of nanofluid flow and heat transfer in 3-d curved microtube. Adv Powder Technol. 2016;27:2175–85.CrossRefGoogle Scholar
  4. 4.
    Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AAAA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16.CrossRefGoogle Scholar
  5. 5.
    Esfe MH, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126(2):837–43.CrossRefGoogle Scholar
  6. 6.
    Mashayekhi R, Khodabandeh E, Bahiraei M, Bahrami L, Toghraie D, Akbari OA. Application of a novel conical strip insert to improve the efficacy of water–Ag nanofluid for utilization in thermal systems: a two-phase simulation. Energ Convers Manag. 2017;151:573–86.CrossRefGoogle Scholar
  7. 7.
    Darzi AAR, Afrouzi HH, Khaki M, Abbasi M. Unconstrained melting and solidification inside rectangular enclosure. J Fundam Appl Sci. 2015;7(3):436–51.CrossRefGoogle Scholar
  8. 8.
    Darzi AAR, Afrouzi HH, Alizadeh E, Shokri V. Numerical simulation of heat and mass transfer during absorption of hydrogen in metal hydride tank. Heat Transf Asian Res. 2017;46(1):75–90.CrossRefGoogle Scholar
  9. 9.
    Darzi AAR, Afrouzi HH, Sedighi K, Farhadi M. Analysis of effective parameters on hydrogen desorption from an industrial metal hydride tank. Energy Eng Manag. 2014;4(3):30–7.Google Scholar
  10. 10.
    Afrouzi HH. Cooling of hot obstacle filled by PCM in channel. Int J Adv Ind Eng. 2014;2(1):6–11.Google Scholar
  11. 11.
    Mahyari H, Afrouzi HH, Shams M. Three dimensional transient multiphase flow simulation in a dead end anode polymer electrolyte fuel cell. J Mol Liq. 2017;225:391–405.CrossRefGoogle Scholar
  12. 12.
    Afrouzi HH, Moshfegh A, Farhadi M, Sedighi K. Dissipative particle dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale. Transp Phenom. Nano Micro Scales. 2016;5(1):44–53.Google Scholar
  13. 13.
    Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22.CrossRefGoogle Scholar
  14. 14.
    Kavusi H, Toghraie D. A comprehensive study of the performance of a heat pipe by using of various nanofluids. Adv Powder Technol. 2017;28(11):3074–84.CrossRefGoogle Scholar
  15. 15.
    Afrouzi HH, Darzi AAR, Delavar MA, Mehrizi AA. Pulsating flow and heat transfer in a helical tube with constant heat flux. Int J Adv Ind Eng. 2013;1(2):36–9.Google Scholar
  16. 16.
    Mehrizi AA, Sedighi K, Afrouzi HH, Aghili AL. Lattice Boltzmann simulation of forced convection in vented cavity filled by porous medium with obstruction. World Appl Sci J. 2012;16:31–6.Google Scholar
  17. 17.
    Toghraie D, Mahmoudi M, Akbari OA, Pourfattah F, Heydari M. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7254-3.CrossRefGoogle Scholar
  18. 18.
    Mihandoust A, Jahanian O, Hassanzadeh H. Numerical simulation of inlet vortex near the inlet air duct of an aircraft engine in headwind condition. Modares Mech Eng. 2017;17(6):90–100.Google Scholar
  19. 19.
    Akbari OA, Karimipour A, Toghraie D, Safaei MR, Alipour Goodarzi MH, Dahari M. Investigation of Rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comput. 2016;290:135–53.Google Scholar
  20. 20.
    Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E. 2017;93:179–89.CrossRefGoogle Scholar
  21. 21.
    Heydari A, Akbari OA, Safaei MR, Derakhshani M, Alrashed AAAA, Mashayekhi R, Ahmadi Sheikh Shabani GHR, Zarringhalam M, Nguyen TK. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6746-x.CrossRefGoogle Scholar
  22. 22.
    Heydari M, Toghraie D, Akbari OA. The effect of semi-attached and offset mid-truncated ribs and water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci Eng Prog. 2017;2:140–50.CrossRefGoogle Scholar
  23. 23.
    Esfe MH, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126(2):643–48.CrossRefGoogle Scholar
  24. 24.
    Gholami MR, Akbari OA, Marzban A, Toghraie D, Ahmadi Sheikh Shabani GHR, Zarringhalam M. The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6902-3.CrossRefGoogle Scholar
  25. 25.
    Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2016;7:1–11.Google Scholar
  26. 26.
    Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.CrossRefGoogle Scholar
  27. 27.
    Alrashed AAAA, Akbari OA, Heydari A, Toghraie D, Zarringhalam M, Ahmadi Sheikh Shabani GHR, Seifi AR, Goodarzi M. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Phys B. 2018;537:176–83.CrossRefGoogle Scholar
  28. 28.
    Ghafouri S, Alizadeh M, Seyyedi SM, Afrouzi HH, Ganji DD. Deposition and dispersion of aerosols over triangular cylinders in a two-dimensional channel; effect of cylinder location and arrangement. J Mol Liq. 2015;206:228–38.CrossRefGoogle Scholar
  29. 29.
    Barzegarian R, Moraveji MK, Aloueyan A. Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid. Exp Thermal Fluid Sci. 2016;74:11–8.CrossRefGoogle Scholar
  30. 30.
    Pourmirzaagha H, Afrouzi HH, Mehrizi AA. Nano-particles transport in a concentric annulus: a lattice Boltzmann approach. J Theor Appl Mech. 2015;53(3):683–95.CrossRefGoogle Scholar
  31. 31.
    Sarlak R, Yousefzadeh Sh, Akbari OA, Toghraie D, Sarlak S, Assadi F. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.CrossRefGoogle Scholar
  32. 32.
    Hung TC, Yan WM, Li WP. Analysis of heat transfer characteristics of double-layered microchannel heat sink. Int J Heat Mass Transf. 2012;55:3090–9.CrossRefGoogle Scholar
  33. 33.
    Hung TC, Yan WM. Enhancement of thermal performance in double-layered microchannel heat sink with nanofluids. Int J Heat Mass Transf. 2012;55:3225–38.CrossRefGoogle Scholar
  34. 34.
    Hung TC, Yan WM, Wang XD, Huang YX. Optimal design of geometric parameters of double-layered microchannel heat sinks. Int J Heat Mass Transf. 2012;55:3262–72.CrossRefGoogle Scholar
  35. 35.
    Wong KC, Muezzin FNA. Heat transfer of a parallel flow two-layered microchannel heat sink. Int Commun Heat Mass Transfer. 2013;49:136–40.CrossRefGoogle Scholar
  36. 36.
    Wu JM, Zhao JY, Tseng KJ. Parametric study on the performance of double-layered microchannels heat sink. Energy Convers Manag. 2014;80:550–60.CrossRefGoogle Scholar
  37. 37.
    Leng C, Wang XD, Wang TH, Yan WM. Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink. Int J Heat Mass Transf. 2015;84:359–69.CrossRefGoogle Scholar
  38. 38.
    Rajabifar B. Enhancement of the performance of a double layered microchannel heatsink using PCM slurry and nanofluid coolants. Int J Heat Mass Transf. 2015;88:627–35.CrossRefGoogle Scholar
  39. 39.
    Arani AAA, Akbari OA, Safaei MR, Marzban A, Alrashed AAAA, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.CrossRefGoogle Scholar
  40. 40.
    Shen H, Jin X, Zhang F, Xie G, Sunden B, Yan H. Computational optimization of counter-flow double-layered microchannel heat sinks subjected to thermal resistance and pumping power. Appl Therm Eng. 2017;121:180–9.CrossRefGoogle Scholar
  41. 41.
    Safaei MR, Saleh SR, Goodarzi M. Numerical studies of laminar natural convection in a square cavity with orthogonal grid mesh by finite volume. Int J Adv Des Manuf Technol. 2008;1(2):13–21.Google Scholar
  42. 42.
    Moghiman M, Rahmanian B, Safaei MR, Goodarzi M. Numerical investigation of heat transfer in circular perforated plates exposed to parallel flow and suction. Int J Adv Des Manuf Technol. 2008;1(3):43–54.Google Scholar
  43. 43.
    Maghmoumi Y, Alavi MA, Safaei MR, Nourollahi I. Numerical analyses of steady non-Newtonian flow over flat plate on intermediate Reynolds numbers by finite volume method. Int J Adv Des Manuf Technol. 2008;1(4):21–31.Google Scholar
  44. 44.
    Seifi AR, Akbari OA, Alrashed AAAA, Afshary F, Ahmadi Sheikh Shabani GHR, Seifi R, Goodarzi M, Pourfattah F. Effects of external wind breakers of Heller dry cooling system in power plants. Appl Therm Eng. 2018;129:1124–34.CrossRefGoogle Scholar
  45. 45.
    Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Phys E: Low-dimensional Syst Nanostruct. 2017;93:167–78.CrossRefGoogle Scholar
  46. 46.
    Faridzadeh MR, Toghraie D, Niroomand A. Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf Res. 2014;45(4):361–90.CrossRefGoogle Scholar
  47. 47.
    Ahmadi AA, Khodabandeh E, Moghadasi H, Malekian N, Akbari OA, Bahiraei M. Numerical study of flow and heat transfer of water–Al2O3 nanofluid inside a channel with an inner cylinder using Eulerian–Lagrangian approach. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6798-y.CrossRefGoogle Scholar
  48. 48.
    Leng Chuan, Wang Xiao-Dong, Wang Tian-Hu. An improved design of double-layered microchannel heat sink with truncated top channels. Appl Therm Eng. 2015;79:54–62.CrossRefGoogle Scholar
  49. 49.
    Mehryan SAM, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28(9):2295–305.CrossRefGoogle Scholar
  50. 50.
    Khodabandeh E, Pourramezan M, Pakravan MH. Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater. Appl Therm Eng. 2016;105:537–48.CrossRefGoogle Scholar
  51. 51.
    Khodabandeh E, Ghaderi M, Afzalabadi A, Rouboa A, Salarifard A. Parametric study of heat transfer in an electric arc furnace and cooling system. Appl Therm Eng. 2017;123:1190–200.CrossRefGoogle Scholar
  52. 52.
    Wei X, Joshi Y, Patterson MK. Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices. J Heat Transfer. 2007;129(10):1432–44.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Khomeinishahr BranchIslamic Azad UniversityKhomeinishahrIran
  2. 2.Mechanical Engineering DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  3. 3.Department of Mechanical EngineeringKermanshah University of TechnologyKermanshahIran

Personalised recommendations