Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2339–2347 | Cite as

Non-isothermal kinetics study on the thermal decomposition of brucite by thermogravimetry

  • Chuanjiang Liu
  • Tao Liu
  • Duojun WangEmail author


The non-isothermal decomposition kinetics of brucite under nitrogen atmosphere was studied using thermogravimetry and XRD techniques. The curves of mass loss with temperature implied that the first step of thermal decomposition took place at 300–400 °C, followed by a relatively slow process up to 600 °C. The initial decomposition temperature was significantly affected by heating rate, but it had no obvious influence on the total yield of water molecules. The apparent activation energies were calculated to be 144.29 kJ mol−1 to 148.82 kJ mol−1 in the given range of conversion, and the dependence of E on the extent of conversion indicated the existence of a consecutive process. The kinetic differential equation was established as dα/dT = (1.68 × 109/β) exp(− 1.70 × 104/T) (1 − α). The thermal decomposition could be described by first-order single reaction model for the main step, whereas it was dominated by the diffusion of water molecule at the mid-late stages.


Non-isothermal Kinetics Brucite Thermogravimetry Mechanism 



The authors thank the staff of beamline BL14B1 of the SSRF (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. This work is financially supported by the Natural Science Foundation of China [Grant Number 41603061].


  1. 1.
    Hyde BG, Anderson S. Inorganic crystal structures. New York: Wiley Interscience; 1989.Google Scholar
  2. 2.
    Wyckoff RWG. Structure of crystals. New York: Chemical Catalog Company; 1924.Google Scholar
  3. 3.
    Hostetler PB, Coleman RG, Mumpton FA, Evans BW. Brucite in alpine serpentinites. Am Miner. 1966;51:75–98.Google Scholar
  4. 4.
    Eckstrand OR. The Dumont serpentinite: a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ Geol. 1975;70:183–201.CrossRefGoogle Scholar
  5. 5.
    Evans BW. The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev. 2004;46:479–506.CrossRefGoogle Scholar
  6. 6.
    Hopkinson L, Beard JS, Boulter CA. The hydrothermal plumbing of a serpentinite-hosted detachment: evidence from the West Iberia non-volcanic rifted continental margin. Mar Geol. 2004;204:301–15.CrossRefGoogle Scholar
  7. 7.
    Anderson PJ, Horlock RF. Thermal decomposition of magnesium hydroxide. Trans Faraday Soc. 1962;58:1993–2004.CrossRefGoogle Scholar
  8. 8.
    Turner RC, Hoffman I, Chen D. Thermogravimetry of the dehydration of Mg(OH)2. Can J Chem. 1963;41:243–51.CrossRefGoogle Scholar
  9. 9.
    Gordon RS, Kingery WD. Thermal decomposition of brucite: I, electron and optical microscope studies. J Am Ceram Soc. 1966;49:654–60.CrossRefGoogle Scholar
  10. 10.
    Gordon RS, Kingery WD. Thermal decomposition of brucite: II, kinetics of decomposition in vacuum. J Am Ceram Soc. 1967;50:8–14.CrossRefGoogle Scholar
  11. 11.
    Butt DP, Lackner KS, Wendt CH, Conzone SD, Kung H, Lu YC, Bremser JK. Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide. J Am Ceram Soc. 1996;79:1892–8.CrossRefGoogle Scholar
  12. 12.
    Bhatti A, Dollimore D. Decomposition kinetics of magnesium hydroxide using DTA. Thermochim Acta. 1984;78:55–62.CrossRefGoogle Scholar
  13. 13.
    Laureiro Y, Jerex A, Pico C, Veiga ML. Controlled decomposition rate thermal analysis of Mg(OH)2 and Cd(OH)2. Kinetic study. Thermochim Acta. 1991;182:47–56.CrossRefGoogle Scholar
  14. 14.
    Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S. Study of dehydration of magnesium hydroxide. J Phys Chem. 1995;99:10890–6.CrossRefGoogle Scholar
  15. 15.
    Lonvik K. An experimental investigation of the thermal decomposition of brucite by thermosonimetry. Thermochim Acta. 1978;27:27–44.CrossRefGoogle Scholar
  16. 16.
    Ball MC, Taylor HFW. The dehydration of brucite. Miner Mag. 1961;32:754–66.Google Scholar
  17. 17.
    Pfeiffer H. Thermal analysis of the Mg(OH)2 dehydroxylation process at high pressures. Thermochim Acta. 2011;525:180–2.CrossRefGoogle Scholar
  18. 18.
    Nahdi K, Rouquerol F, Ayadi MT. Mg(OH)2 dehydroxylation: a kinetic study by controlled rate thermal analysis (CRTA). Solid State Sci. 2009;11:1028–34.CrossRefGoogle Scholar
  19. 19.
    Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. J Inorg Nucl Chem. 1978;40:979–82.CrossRefGoogle Scholar
  20. 20.
    Milosavljevic I, Oja V, Suuberg E. Thermal effects in cellulose pyrolysis: relationship to char formation processes. Ind Eng Chem Res. 1996;35:653–62.CrossRefGoogle Scholar
  21. 21.
    Missoum A, Gupta K, Chen J. Global kinetics of the thermal decomposition of waste materials. In: IECEC-97, proceedings of the thirty-second intersociety energy conversion engineering conference. 1997. Vol. 1, pp. 636–641.Google Scholar
  22. 22.
    Wendlandt WW. Thermal methods of analysis. New York: Wiley; 1974.Google Scholar
  23. 23.
    Young D. Decomposition of Solids. Oxford: Pergamon Press; 1966.Google Scholar
  24. 24.
    Bamford CH, Tipper CFH. Reactions in the solid state. Amsterdam: Elsevier; 1980.Google Scholar
  25. 25.
    Rafiq RA, Abou-Shaaban A, Simonelli AP. Thermal analysis of reactions and transformations in the solid state. III. Kinetic studies of desolvation, chemical degradation and phase transformation using thermogravimetry. Thermochim Acta. 1978;26:111–24.CrossRefGoogle Scholar
  26. 26.
    Carr NJ, Galwey AK. Decomposition reactions of solids (an experiment in reviewing). Thermochim Acta. 1984;79:323–70.CrossRefGoogle Scholar
  27. 27.
    Matečić S, Fiamengo I, Sućeska M. Applicability of non-isothermal DSC and Ozawa method for studying kinetics of double base propellant decomposition. Cent Eur J Energy Mater. 2010;7:233–51.Google Scholar
  28. 28.
    Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.CrossRefGoogle Scholar
  29. 29.
    Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta. 2008;472:55–63.CrossRefGoogle Scholar
  30. 30.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bureau Stand. 1966;70A:487–523.CrossRefGoogle Scholar
  31. 31.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Phys. 1966;4:323–8.Google Scholar
  32. 32.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  33. 33.
    Ozawa T. Non-isothermal kinetics and the generalized time. Thermochim Acta. 1986;100:109–18.CrossRefGoogle Scholar
  34. 34.
    Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.CrossRefGoogle Scholar
  35. 35.
    Trittschack R, Grobéty B, Brodard P. Kinetics of the chrysotile and brucite dehydroxylation reaction: a combined non-isothermal/isothermal thermogravimetric analysis and high-temperature X-ray powder diffraction study. Phys Chem Miner. 2014;41:197–214.CrossRefGoogle Scholar
  36. 36.
    Gersten J, Fainberg V, Hetsroni G, Shindler Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture. Fuel. 2000;79:1679–86.CrossRefGoogle Scholar
  37. 37.
    Rasooli A, Boutorabi MA, Divandari M, Azarniya A. Effect of high heating rate on thermal decomposition behaviour of titanium hydride (TiH2) powder in air. Bull Mater Sci. 2013;36:301–9.CrossRefGoogle Scholar
  38. 38.
    Naktiyok J, Bayrakceken H, Özer AK, Gülaboğlu MS. Kinetics of thermal decomposition of phospholipids obtained from phosphate rock. Fuel Process Technol. 2013;116:158–64.CrossRefGoogle Scholar
  39. 39.
    Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.CrossRefGoogle Scholar
  40. 40.
    Trache D, Maggi F, Palmucci I, Deluca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15.CrossRefGoogle Scholar
  41. 41.
    Hao YH, Huang Z, Ye QQ, Wang JW, Yang XY, Fan XY, Li YL, Peng YW. A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods. J Therm Anal Calorim. 2017;128:1077–91.CrossRefGoogle Scholar
  42. 42.
    Borsoi C, Zimmernnam MVG, Zattera AJ, Santana RMC, Ferreira CA. Thermal degradation behavior of cellulose nanofibers and nanowhiskers. J Therm Anal Calorim. 2016;126:1867–78.CrossRefGoogle Scholar
  43. 43.
    Leena K, Soumyamol PB, Baby M, Suraj S, Rajeev R, Mohan DS. Non-isothermal cure and decomposition kinetics of epoxy–imidazole systems. J Therm Anal Calorim. 2017;130:1053–61.CrossRefGoogle Scholar
  44. 44.
    Wako FM, Reshad AS, Goud VV. Thermal degradation kinetics study and thermal cracking of waste cooking oil for biofuel production. J Therm Anal Calorim. 2018;131:2157–65.CrossRefGoogle Scholar
  45. 45.
    Mohamed MA, Atty SA, Banks CE. Thermal decomposition kinetics of the antiparkinson drug “entacapone” under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2017;130:2359–67.CrossRefGoogle Scholar
  46. 46.
    Hu RZ, Shi QZ. Thermal analysis of kinetics. Beijing: Science Press; 2001.Google Scholar
  47. 47.
    Ning ZQ, Zhai YC, Sun LQ, Gu HM, Zhou D, Xu D. Study on the thermal decomposition kinetics of magnesium hydroxide. J Mol Sci. 2009;25:27–30.Google Scholar
  48. 48.
    Yue LH, Jin DL, Lu DY, Xu ZD. The non-isothermal kinetic analysis of thermal decomposition of Mg(OH)2. Acta Physchim Sin. 2005;21:752–7.Google Scholar
  49. 49.
    Pampuch R, Librant Z, Piekarzyk J. Texture and sinterability of MgO powers. Ceram Int. 1975;1:14–8.CrossRefGoogle Scholar
  50. 50.
    Hartman M, Trnka O, Vesely V. Thermal dehydration of magnesium hydroxide and sintering of nascent magnesium oxide. AIChE J. 1994;40:536–42.CrossRefGoogle Scholar
  51. 51.
    Halikia I, Neou P, Kolitsa D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta. 1998;320:75–88.CrossRefGoogle Scholar
  52. 52.
    Li LG, Yang JY, Zhong H, Yang Z. Studies on the kinetic mechanism of Mg(OH)2 thermo-decomposition. J Salt Lake Res. 2006;14:39–42.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Key Laboratory of Computational GeodynamicsUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations