Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2391–2396 | Cite as

Thermal phase transition of pyrite from coal

Implication for the environmental impact of sulfur pollution
  • Yi Zhou
  • Peijie Xu
  • Hongfei Cheng
  • Qinfu Liu
Article
  • 72 Downloads

Abstract

The thermal phase transition of pyrite from coal was studied using thermogravimetry and derivative thermogravimetric, infrared spectroscopy and X-ray diffraction (XRD). According to the XRD results, the phase transition of the pyrite starts at 350 °C, pyrrhotite and magnetite are intermediate products of the oxidation from pyrite to hematite. It was proposed that the main gases and volatile products released during the thermal decomposition of the pyrite are water (H2O) and sulfur dioxide (SO2). The existence of sulfate species in the roasted samples also verified the emissions. These results proved the phase transition of pyrite and explain that they have a rational relationship. The environmental impact related to the thermal phase transition has been discussed, although the pyrolyzation in natural environment is really a very complicated process, it is still able to understand the thermal habits of pyrite in coal by studying pyrite from coal and control surrounding conditions so as to reduce and improve the environmental impact of sulfur pollution.

Keywords

Pyrite from coal Thermal behavior Phase transition Environmental impact 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (41602171), the Beijing Natural Science Foundation (8164062) and Beijing Nova Program (xx2015B081).

References

  1. 1.
    Udayabhaskar Reddy G, Seshamaheswaramma K, Nakamura Y, Lakshmi Reddy S, Frost RL, Endo T. Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;96:310–5.  https://doi.org/10.1016/j.saa.2012.04.093.CrossRefGoogle Scholar
  2. 2.
    Hu H, Chen Q, Yin Z, Zhang P. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG). Thermochim Acta. 2003;398(1):233–40.  https://doi.org/10.1016/S0040-6031(02)00390-8.CrossRefGoogle Scholar
  3. 3.
    Zhao H-L, Bai Z-Q, Yan J-C, Bai J, Li W. Transformations of pyrite in different associations during pyrolysis of coal. Fuel Process Technol. 2015;131:304–10.  https://doi.org/10.1016/j.fuproc.2014.11.035.CrossRefGoogle Scholar
  4. 4.
    Chen H, Li B, Zhang B. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis. Fuel. 2000;79(13):1627–31.  https://doi.org/10.1016/S0016-2361(00)00015-6.CrossRefGoogle Scholar
  5. 5.
    Yan J, Xu L, Yang J. A study on the thermal decomposition of coal-derived pyrite. J Anal Appl Pyrol. 2008;82(2):229–34.  https://doi.org/10.1016/j.jaap.2008.03.013.CrossRefGoogle Scholar
  6. 6.
    Cheng H, Liu Q, Huang M, Zhang S, Frost RL. Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite. Thermochim Acta. 2013;555:1–6.  https://doi.org/10.1016/j.tca.2012.12.025.CrossRefGoogle Scholar
  7. 7.
    Bhargava SK, Garg A, Subasinghe ND. In situ high-temperature phase transformation studies on pyrite. Fuel. 2009;88(6):988–93.  https://doi.org/10.1016/j.fuel.2008.12.005.CrossRefGoogle Scholar
  8. 8.
    Murphy R, Strongin DR. Surface reactivity of pyrite and related sulfides. Surf Sci Rep. 2009;64(1):1–45.  https://doi.org/10.1016/j.surfrep.2008.09.002.CrossRefGoogle Scholar
  9. 9.
    Deng J, Zhao J-Y, Xiao Y, Zhang Y-N, Huang A-C, Shu C-M. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. J Therm Anal Calorim. 2017;129(3):1779–86.  https://doi.org/10.1007/s10973-017-6331-3.CrossRefGoogle Scholar
  10. 10.
    Paulik F, Paulik J, Arnold M. Simultaneous TG, DTG, DTA and EGA technique for the determination of carbonate, sulphate, pyrite and organic material in minerals, soil and rocks. J Therm Anal Calorim. 1984;29(2):333–44.  https://doi.org/10.1007/bf02720069.CrossRefGoogle Scholar
  11. 11.
    Corradi AB, Leonelli C, Manfredini T, Pennisi L, Romagnoli M. Quantitative determination of pyrite in, ceramic clay raw materials by DTA. Thermochim Acta. 1996;287(1):101–9.  https://doi.org/10.1016/0040-6031(96)02984-X.CrossRefGoogle Scholar
  12. 12.
    Boyabat N, Özer AK, Bayrakçeken S, Gülaboğlu MŞ. Thermal decomposition of pyrite in the nitrogen atmosphere. Fuel Process Technol. 2004;85(2):179–88.  https://doi.org/10.1016/S0378-3820(03)00196-6.CrossRefGoogle Scholar
  13. 13.
    Cheng H, Yang J, Frost RL, Wu Z. Infrared transmission and emission spectroscopic study of selected Chinese palygorskites. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;83(1):518–24.  https://doi.org/10.1016/j.saa.2011.08.077.CrossRefGoogle Scholar
  14. 14.
    Udubasa S, Constantinescu S, Grecu M, Popescu-Pogrion N, Udubasa G, Popescu GC, et al. Structural (ME, XRD, NGR, ESR) investigations on some sulphides from Costesti, Valea lui Stan and Jidostita gold ores (Southern Carpathians, Romania). Rom J Phys. 2007;52(1/2):93.Google Scholar
  15. 15.
    Rzepa G, Bajda T, Gaweł A, Debiec K, Drewniak L. Mineral transformations and textural evolution during roasting of bog iron ores. J Therm Anal Calorim. 2016;123(1):615–30.  https://doi.org/10.1007/s10973-015-4925-1.CrossRefGoogle Scholar
  16. 16.
    Hu G, Dam-Johansen K, Wedel S, Hansen JP. Decomposition and oxidation of pyrite. Prog Energy Combust Sci. 2006;32(3):295–314.  https://doi.org/10.1016/j.pecs.2005.11.004.CrossRefGoogle Scholar
  17. 17.
    Živković ZD, Mitevska N, Savović V. Kinetics and mechanism of the chalcopyrite-pyrite concentrate oxidation process. Thermochim Acta. 1996;282:121–30.  https://doi.org/10.1016/0040-6031(96)02883-3.CrossRefGoogle Scholar
  18. 18.
    Thorpe AN, Senftle FE, Alexander CC, Dulong FT. Oxidation of pyrite in coal to magnetite. Fuel. 1984;63(5):662–8.  https://doi.org/10.1016/0016-2361(84)90163-7.CrossRefGoogle Scholar
  19. 19.
    Cheng H, Liu Q, Zhang S, Wang S, Frost RL. Evolved gas analysis of coal-derived pyrite/marcasite. J Therm Anal Calorim. 2014;116(2):887–94.  https://doi.org/10.1007/s10973-013-3595-0.CrossRefGoogle Scholar
  20. 20.
    Labus M. Thermal methods implementation in analysis of fine-grained rocks containing organic matter. J Therm Anal Calorim. 2017;129(2):965–73.  https://doi.org/10.1007/s10973-017-6259-7.CrossRefGoogle Scholar
  21. 21.
    Shkodin VG, Abishev DN, Kobzhasov AK, Malyshev VP, Mangutova RF. The question of thermal decomposition of pyrite. J Therm Anal Calorim. 1978;13(1):49–53.  https://doi.org/10.1007/bf01909907.CrossRefGoogle Scholar
  22. 22.
    Kirilov PP, Gruncharov IN, Pelovski YG. Enthalpy of thermal decomposition of pyrite concentrate. Thermochim Acta. 1994;244:79–83.  https://doi.org/10.1016/0040-6031(94)80208-4.CrossRefGoogle Scholar
  23. 23.
    Thomas PS, Hirschausen D, White RE, Guerbois JP, Ray AS. Characterisation of the oxidation products of pyrite by thermogravimetric and evolved gas analysis. J Therm Anal Calorim. 2003;72(3):769.  https://doi.org/10.1023/a:1025001811801.CrossRefGoogle Scholar
  24. 24.
    Lei M, Huang X, Wang C, Yan W, Wang S. Investigation on SO2, NO and NO2 release characteristics of Datong bituminous coal during pressurized oxy-fuel combustion. J Therm Anal Calorim. 2016;126(3):1067–75.  https://doi.org/10.1007/s10973-016-5652-y.CrossRefGoogle Scholar
  25. 25.
    Srinivasachar S, Boni AA. A kinetic model for pyrite transformations in a combustion environment. Fuel. 1989;68(7):829–36.  https://doi.org/10.1016/0016-2361(89)90116-6.CrossRefGoogle Scholar
  26. 26.
    Yan S, Zhang X, Sun Y, Wang T, Chen X, Yin J. In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(l-glutamic acid)/chitosan microcapsules for drug delivery. Colloids Surf B. 2014;113:302–11.  https://doi.org/10.1016/j.colsurfb.2013.09.004.CrossRefGoogle Scholar
  27. 27.
    Jovanović D. Kinetics of thermal decomposition of pyrite in an inert atmosphere. J Therm Anal. 1989;35(5):1483–92.  https://doi.org/10.1007/bf01912925.CrossRefGoogle Scholar
  28. 28.
    Paulik F, Paulik J, Arnold M. Kinetics and mechanism of the decomposition of pyrite under conventional and quasi-isothermal—quasi-isobaric thermoanalytical conditions. J Therm Anal Calorim. 1982;25(2):313–25.  https://doi.org/10.1007/bf01912956.CrossRefGoogle Scholar
  29. 29.
    Pua FL, Chia CH, Zakari S, Liew TK, Yarmo MA, Huang NM. Preparation of transition metal sulfide nanoparticles via hydrothermal route. Sains Malays. 2010;39(2):243–8.Google Scholar
  30. 30.
    Philias JM, Marsan B. FTIR spectroscopic study and thermal and electrical properties of polymer electrolytes containing a cesium thiolate/disulfide redox couple. Electrochim Acta. 1999;44(14):2351–63.  https://doi.org/10.1016/S0013-4686(98)00357-0.CrossRefGoogle Scholar
  31. 31.
    Bemana H, Rashid-Nadimi S. Effect of sulfur doping on photoelectrochemical performance of hematite. Electrochim Acta. 2017;229:396–403.  https://doi.org/10.1016/j.electacta.2017.01.150.CrossRefGoogle Scholar
  32. 32.
    Oana S, Ishikawa H. Sulfur isotopic fractionation between sulfur and sulfuric acid in the hydrothermal solution of sulfur dioxide. Geochem J. 1966;1(1):45–50.  https://doi.org/10.2343/geochemj.1.45.CrossRefGoogle Scholar
  33. 33.
    Kawano M, Tomita K. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am Miner. 2001;86(10):1156–65.  https://doi.org/10.2138/am-2001-1005.CrossRefGoogle Scholar
  34. 34.
    Xu Y, Schoonen MAA, Nordstrom DK, Cunningham KM, Ball JW. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. the origin of thiosulfate in hot spring waters. Geochim Cosmochim Acta. 1998;62(23):3729–43.  https://doi.org/10.1016/S0016-7037(98)00269-5.CrossRefGoogle Scholar
  35. 35.
    Oliveira CM, Machado CM, Duarte GW, Peterson M. Beneficiation of pyrite from coal mining. J Clean Prod. 2016;139:821–7.  https://doi.org/10.1016/j.jclepro.2016.08.124.CrossRefGoogle Scholar
  36. 36.
    Coale GB. An investigation of the oxidation of ferrous sulfide by fluosolid technique. Houston: Rice University; 1955.Google Scholar
  37. 37.
    Nickless G. Inorganic sulphur chemistry. Amsterdam: Elsevier; 1968.Google Scholar
  38. 38.
    Bylina I, Trevani L, Mojumdar SC, Tremaine P, Papangelakis VG. Measurement of reaction enthalpy during pressure oxidation of sulphide minerals. J Therm Anal Calorim. 2009;96(1):117–24.  https://doi.org/10.1007/s10973-008-9883-4.CrossRefGoogle Scholar
  39. 39.
    Wurendaodi W, Dujiya J, Zhao S, Wu H, Asuha S. Thermal transformation of water-dispersible magnetite nanoparticles. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6431-0.CrossRefGoogle Scholar
  40. 40.
    Tiwary RK. Environmental impact of coal mining on water regime and its management. Water Air Soil Pollut. 2001;132(1):185–99.  https://doi.org/10.1023/a:1012083519667.CrossRefGoogle Scholar
  41. 41.
    Subasinghe ND, Awaja F, Bhargava SK. Variation of kerogen content and mineralogy in some Australian tertiary oil shales. Fuel. 2009;88(2):335–9.  https://doi.org/10.1016/j.fuel.2008.07.035.CrossRefGoogle Scholar
  42. 42.
    Gray NF. Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol. 1997;30(1):62–71.  https://doi.org/10.1007/s002540050133.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Geoscience and Surveying EngineeringChina University of Mining and TechnologyBeijingPeople’s Republic of China
  2. 2.School of Environmental Science and EngineeringChang’an UniversityXi’anPeople’s Republic of China

Personalised recommendations